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1 Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

2 Odyssée Lab – INRIA, ENS , ENPC (France)

3 Department of Computer Science, Northwestern University

This course reviews the wealth of work related to bilateral filtering. The bilateral filter is
ubiquitous in computational photography applications. It is increasingly common in computer
graphics research papers but no single reference summarizes its properties and applications.
This course provides a graphical, intuitive introduction to bilateral filtering, and a practical
guide for image editing, tone-mapping, video processing and more.

1 Introduction

The bilateral filter is technique to smooth images while preserving edges. It can be traced back
to 1995 with the work of Aurich and Weule [1995] on nonlinear Gaussian filters. It has been
later rediscovered by Smith and Brady [1997b] as part of their SUSAN framework, and Tomasi
and Manduchi [1998] who gave it its current name. Since then, the use of bilateral filtering
has grown rapidly and is now ubiquitous in image-processing applications. It has been used in
various contexts such as denoising [Bennett and McMillan, 2005; Aleksic et al., 2006; Liu et al.,
2006], texture editing and relighting [Oh et al., 2001], tone management [Durand and Dorsey,
2002; Petschnigg et al., 2004; Eisemann and Durand, 2004; Bennett and McMillan, 2005; Elad,
2005; Bae et al., 2006], demosaicking [Ramanath and Snyder, 2003], stylization [Winnemöller
et al., 2006], and optical-flow estimation [Xiao et al., 2006; Sand and Teller, 2006]. The
bilateral filter has several qualities that explain its success:

• Its formulation is simple: each pixel is replaced by an average of its neighbors. This
aspect is important because it makes it easy to acquire intuition about its behavior, to
adapt it to application-specific requirements, and to implement it.

• It depends only on two parameters that indicate the size and contrast of the features to
preserve.

• It can be used in a non-iterative manner. This makes the parameters easy to set since
their effect is not cumulative over several iterations.

1



• It can be computed at interactive speed even on large images thanks to efficient numer-
ical schemes [Durand and Dorsey, 2002; Elad, 2002; Pham and van Vliet, 2005; Pham,
2006; Paris and Durand, 2006a; Weiss, 2006] and even in real time if graphics hardware
is available [Chen et al., 2007].

In parallel to applications, a wealth of theoretical studies [Sochen et al., 2001; van de Weijer
and van den Boomgaard, 2001, 2002; Elad, 2002; Barash, 2002; Barash and Comaniciu, 2004;
Durand and Dorsey, 2002; Buades et al., 2005c; Mrázek et al., 2006; Paris and Durand, 2006a]
explained and characterized the bilateral filter’s behavior. The strengths and limitations of
bilateral filtering are now fairly well understood. As a consequence, several extensions have
been proposed [Elad, 2002; Choudhury and Tumblin, 2003; Buades et al., 2005c].

This article is organized as follows. Section 2 briefly present what is a digital image and
the main notations. Section 3 presents linear Gaussian filtering and the nonlinear extension
to the bilateral filter. Section 4 revisits several recent, novel and challenging applications of
bilateral filter. Section 5 compares different ways to implement the bilateral filter efficiently.
Section 6 presents several links of bilateral filter with other frameworks and also different
ways to interpret it. Section 7 focus on the link between bilateral filter and the framework
of partial differential equations (PDE) where several contributions exist. Section 8 exposes
extensions and variants of the bilateral filter.

2 Preliminaries

2.1 About this Section

This section is introductory. Section 2.2 reminds some basic features of a digital image and
introduces main notations. Section 2.3 is an illustration of the variety of structures in an
image, which need to be considered when an image processing algorithm is proposed.

2.2 Definition of a Digital Image

A digital image (also called a discrete image) comes from a continuous world. It is obtained
from an analogue image by sampling and quantization. This process depends on the acqui-
sition device and depends, for instance, on CCDs for digital cameras. Basically, the idea is
to superimpose a regular grid on an analogue image and to assign a digital number to each
square of the grid, for example the average brightness in that square. Each square is called a
pixel, for picture element, and its value is the gray-level or brightness.

So an image has two main characteristics (see Figure 1):

• The space domain S, which is the set of possible positions in an image. This is related
to the resolution, i.e., the number of rows and columns in the image. Consumer-grade
cameras now give images with several megapixels (i.e. millions of pixels), typically
between 5 and 10, professional cameras provides up to 16 megapixels, and some pro-
totypes reach several hundreds of megapixels [Wang and Heidrich, 2004] or even a few
gigapixels [Flint et al.; Kopf et al., 2007].
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• The range domain R, which is the set of possible pixel values. The number of bits used
to represent the pixel value may vary. Common pixel representations are unsigned bytes
(0 to 255) and floating point. To describe a pixel, one may also need several channels (or
bands): for example, a vector field has two components, a color image is described with
three channels, red, green and blue (or any other color space such as hue, saturation,
value, namely HSV, see also [Poynton, 1995]).

� In all the sequel, we will denote by I a gray scale image, and p, q, some pixel positions.
Bold characters will be used for vector valued quantities.

p

p

y

x

pI

Figure 1: A digital image is nothing but a two-dimensional array of pixels with assigned
brightness values. We will denote by I a gray-scale image and p = (px, py) the 2D pixel
position.

2.3 Variety of Structures

As in the real world, an image is composed of a wide variety of structures, and this is even
more complex because of the digitalization and the limited number of gray levels to repre-
sent it. We show in Figure 2 an image and some close-ups on different parts. This shows
the effects of low resolution (some areas would need more pixels to be accurately represented)
and low contrasts, different kind of “textures,” progressive or sharp contours, and fine objects.

� This illustrates the complexity of processing images choosing some structure to preserve.

3 From Gaussian Blur to Bilateral Filter

3.1 About this Section

To introduce bilateral filtering, we first describe in Section 3.2 the Gaussian convolution. This
filter is close to the bilateral filter but is not edge-preserving. We will use it to introduce the
notion of local average and in Section 3.3 to underscore the specificities of the bilateral filter
that make it edge-preserving.
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(a)

(b)
(c)

(d)

(e)

Figure 2: Digital image example: (a) low resolution, (b) low contrasts, (c) graduated shadings,
(d) sharp transitions and (e) fine elements.

3.2 Linear Filtering with Gaussian Blur (GB)

Convolution by a positive kernel is the basic operation in linear image filtering. It amounts
to estimate at each position a local average of intensities and corresponds to low-pass filtering
(see also Section 7.3). One defines the Gaussian blur (GB) filtered image by:

GB [I]p =
∑
q∈S

Gσ(||p − q||) Iq, (1)

where Gσ(x) denotes the two-dimensional Gaussian kernel (see Figure 29):

Gσ(x) =
1

2π σ2
exp

(
− x2

2σ2

)
. (2)

So, Gaussian filtering is a weighted average of the intensity of the adjacent positions with
a weight decreasing with the spatial distance to the center position p. This distance is de-
fined by Gσ(||p− q||), where σ is a paramter defining the extension of the neighborhood. As
a result, image edges are blurred (see Figure 3).

� Since the filter action is independent of the image content, only the distances between
positions matter.

Remark An advantage of linear filters is that they can be implemented efficiently using
various techniques such as fast Fourier transform. Unfortunately, these acceleration techniques
do not apply to nonlinear filters such as the bilateral filter. Nonetheless, fast numerical
schemes have been developed specifically for the bilateral filter (see Section 5). �
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Figure 3: Example of Gaussian linear filtering with different σ. Top row show the profile of
a 1D Gaussian kernel and bottom row the result obtained by the corresponding 2D Gaussian
blur biltering. Edges are lost with high values of σ since more averaging is performed.

3.3 Nonlinear Filtering with Bilateral Filter (BF)

Similarly to the Gaussian convolution, the bilateral filter is also defined as a weighted average
of pixels. The difference is that the bilateral filter takes into account the variation of intensities
to preserve edges. The rationale of bilateral filtering is that two pixels are close to each other
not only if they occupy nearby spatial locations but also if they have some similarity in the
photometric range.

The formalization of this idea goes back in the literature to Yaroslavsky [1985], then Aurich
and Weule [1995], Smith and Brady [1997b] and Tomasi and Manduchi [1998]. The bilateral
filter, denoted by BF [.], is defined by:

BF [I]p =
1

Wp

∑
q∈S

Gσs(||p− q||) Gσr(Ip − Iq) Iq (3)

where Wp is a normalization factor:

Wp =
∑
q∈S

Gσs(||p− q||) Gσr (Ip − Iq) (4)

Parameters σs and σr will measure the amount of filtering for the image I. Equation (3) is a
normalized weighted average where Gσs is a spatial Gaussian that decreases the influence of
distant pixels, Gσr a range Gaussian that decreases the influence of pixels q with an intensity
value different from Ip. Note that the term range qualifies quantities related to pixel values,
by opposition to space which refers to pixel location. Figure 4 shows a sample output of the
bilateral filter and Figure 5 illustrates how the weights are computed on a simple example.
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Bilateral filter result Zoom on original Zoom on result

Figure 4: Example of result obtained with the Bilateral filter. First columns shown the
original image (top) and the smoothed image (bottom). Second column is a zoom on one part
of the image (top) with corresponding level lines below. Third column is the same illustration
but for the result. Note that a “staircase effect” is visible, we discuss it in Section 7.5. Zoom
images are reproduced from [Buades et al., 2006].

Parameters The bilateral filter is controlled by two parameters: σs and σr. Figure 6 illus-
trates their effect.

• As the range parameter σr increases, the bilateral filter becomes closer to Gaussian blur
because the range Gaussian is flatter i.e., almost a constant over the intensity interval
covered by the image.

• Increasing the spatial parameter σs smooths larger features.

An important characteristic of bilateral filtering is that the weights are multiplied, which
implies that as soon as one of the weight is close to 0, no smoothing occurs. As an example,
a large spatial Gaussian coupled with narrow range Gaussian achieves a limited smoothing
although the filter has large spatial extent. The range weight enforces a strict preservation of
the contours.

Iterations The bilateral filter can be iterated. This leads to results that are almost piecewise
constant as shown on Figure 7. This type of effect is desirable for applications such as
stylization [Winnemöller et al., 2006], while computational photography techniques [Durand
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input

spatial weight range weight

result

multiplication of range
and spatial weights

bilateral filter weights of the central pixel

}
Figure 5: The bilateral filter smooths an input image while preserving its edges. Each pixel is
replaced by a weighted average of its neighbors. Each neighbor is weighted by a spatial compo-
nent that penalizes distant pixels and range component that penalizes pixels with a different
intensity. The combination of both components ensures that only nearby similar pixels con-
tribute to the final result. The weights are represented for the central pixel (under the arrow).
The figure is reproduced from: Fast bilateral filtering for the display of high-dynamic-range
images Durand and Dorsey ACM SIGGRAPH conference (c) 2002, Association for Computing
Machinery, Inc. Reprinted by permission. http://doi.acm.org/10.1145/566570.566574

σs\σr 0.05 0.2 0.8 GB

4

8

16

Figure 6: Effects of the range and spatial parameters, and comparison with Gaussian blur.
As soon as one of the weight is close to 0, no smoothing occurs. As a consequence, increasing
the spatial sigma has no consequence on a edge as long as the range sigma is less than
its amplitude. For instance, the contour of the roof is unaffected for small range values,
independently of the spatial setting. The range values are given considering that the intensities
span [0, 1].
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1 iteration 2 iteration 4 iteration

Figure 7: Iterations: Bilateral filter can be applied iteratively. The result becomes closer from
a piecewise constant signal. We use σs = 8 and σr = 0.1. This effect can be useful to achieve
cartoon-like renditions of images [Winnemöller et al., 2006].

Input Bilateral filter Residual

Figure 8: Separation: The residual of the bilateral filter reveals the structure of the input
image: Ideally for denoising tasks, the residual should contain only noise. Nonetheless, the
structure visible in the residual is faint and bilateral filtering yields acceptable results in
numerous denoising scenarios.

and Dorsey, 2002; Bennett and McMillan, 2005; Bae et al., 2006] tend to use a single iteration
to be closer to the initial image content.

Separation The bilateral filter splits the input image into two layers: a large-scale com-
ponent which is a smoothed version of the input with the main contours preserved, and a
small-scale component which is the residual of the filter. Depending on the settings and the
application, this small-scale component can be interpreted as noise or texture. This is illus-
trated in Figure 8. This property is used in applications such as tone management and style
transfer (see Section 4).

� To conclude, bilateral filter is then an efficient way to smooth an image while preserv-
ing its discontinuities (see Sections 4.2 and 4.4) but also to separate structures of different
scales (see Section 4.3). As we will see therein, bilateral filter has many applications and this
notion of combining space and intensity was also extended (see Section 8) according to specific
applications.

Remark One possible objection at this stage of the presentation, is that it may be a time-
consuming algorithm, since at each position, one needs to estimate a weighted sum over a
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large neighborhood. In Section 5 we will show some efficient approaches to implement it.
More generally, this idea of edge-preserving restoration has been studied a lot in the domain
of partial differential equations and one can wonder what is the relationship. We will discuss
that point in Section 7. �

4 Applications

4.1 About this Section

In this section we revisit some recent, novel and challenging applications in which the bilateral
filter has been used:

• Denoising (Section 4.2): This is of course the primaly goal of bilateral filter, and it has
been used in several application such as medical images, movie restoration, etc. Some
fields of applications are described. An extension of the bilateral filter will be presented:
the cross bilateral filter.

• Texture and Illumination Separation, Tone Mapping, Retinex, and Tone Management
(Section 4.3): Based on a large-scale / small-scale decomposition of images, these ap-
plications edit texture and manipulate the tonal distribution of an image to match the
capacities of a given display or achieve photographic stylization.

• Three-dimensional Fairing (Section 4.4): This is the counterpart of image denoising for
three-dimensional meshes and point clouds. Noise is removed from these data sets.

• Other Applications (Section 4.5): We present a number of recent promising applications
based on the bilateral filter for which only one or two articles have been published so
far.

4.2 Denoising

One major application of bilateral filtering is denoising [Buades et al., 2005e]. For instance,
Adobe r© Photoshop r© provides the bilateral filter under the name “surface blur” (Figure 9);
It uses a square box function as spatial weight and a tent function as range weight. Unlike
Gaussian blur that smooths images without respecting their visual structure, the bilateral
filter preserves the object contours and produces sharp results.

Liu et al. [2006] show that adapting the range parameter σr to the local noise level yields
more satisfying results. In practice, they advise a linear dependence: σr = 1.95σn where σn

is the local noise level. However, Buades et al. [2006] remark and demonstrate that although
bilateral filtering preserves edges, the preservation is not perfect and some edges are sharpened
during process, incurring an undesirable “staircase effect” as shown in Figure 4 where level
lines are clustered. Note that in Section 7.5, we will present an extension proposed by Buades
et al. to avoid this staircase effect.

Bilateral filter has a lot of applications in denoising, and we mention some of them here.
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(a) input (b) noisy image (c) “surface blur” filter

Figure 9: Denoising using the “surface blur” filter from Adobe r© Photoshop r©. We added
noise (b) the input image (a) and applied the “surface blur” filter. Since the input image has
been corrupted by noise, some loss is inevitable, yet the filtered version is significant improved.

4.2.1 Medical Imagery

In the domain of medical imagery, Wong et al. [2004] improve the structure preservation by
explicitly accounting the structure with an additional weight depending on the local shape
and orientation of the data.

(a) input (b) naive histogram stretching
(c) output of

[Bennett and McMillan, 2005]

Figure 10: Bennett and McMillan [2005] describe how to combine spatial and temporal bi-
lateral filtering to achieve high-quality video denoising and exposure correction. Reproduced
from: Video enhancement using per-pixel virtual exposures Bennett and McMillan ACM
SIGGRAPH conference (c) 2005, Association for Computing Machinery, Inc. Reprinted by
permission. http://doi.acm.org/10.1145/1186822.1073272

4.2.2 Videos

Structure can also be preserved on videos by using temporal smoothing instead of spatial
filtering. Bennett and McMillan [2005] show that for static parts of a video sequence, bilateral
filtering along the time axis produces high quality results (Figure 10). In this configuration,
each frame images the same scene point and the variations of the pixel value are due to only
noise. Assuming a zero-mean noise, temporal averaging effectively reduces the noise level. A
direct application of this idea would be to apply a temporal Gaussian blur, but this would
result in undesirable trails for moving objects. Using temporal bilateral filtering accounts
for temporal discontinuities and prevent such trails. In regions with large motion temporal
bilateral filtering is inefficient since each point is likely to be isolated on the time axis. In
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that situation, Bennett and McMillan resort to spatial filtering, and since this occurs only in
animated regions, the resulting spatial smoothing is unnoticeable.

4.2.3 Flash / No-flash Imaging

To denoise a low-light image, Eisemann and Durand [2004] and Petschnigg et al. [2004] de-
scribe similar techniques that rely on an additional flash photograph. Their work is motivated
by the fact that, although the flash image has an unpleasing hard direct lighting, its signal-
to-noise ratio is higher than the no-flash image. The key idea is that illumination is slowly
varying over the image and is not affected by bilateral filtering. In comparison, noise is high
frequency and mostly disappears after bilateral filtering. Thus, bilateral filtering both the
flash and no-flash images extracts illumination components while the residuals contain part
of the image structure, the no-flash residual being severely corrupted by noise. A visually
pleasing image is obtained by adding the filtered no-flash image with the flash residual to
combine the desired illumination with the high-quality structure.

Figure 11: Denoising of low-light images: Overview of the flash / no-flash combination of Eise-
mann and Durand [2004]. The bilateral filter is used to combine the illumination component of
the no-flash picture and the structure component of the flash picture. Figure reproduced from:
Flash photography enhancement via intrinsic relighting Eisemann et al. ACM SIGGRAPH
conference (c) 2004, Association for Computing Machinery, Inc. Reprinted by permission.
http://doi.acm.org/10.1145/1186562.1015778

Both articles introduced the cross (joint) bilateral filter to better process the no-flash
photograph whose noise level is often too high to enable a accurate edge detection. Since
the flash image F represents the same scene, it is used to define the edges and the filtered
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no-flash image is obtained as CBF [N,F ] where N is the original no-flash image. Figure 11
gives an overview of the process, and Figures 12 and 13 show sample results from Eisemann
and Durand, and Petschnigg et al..

(a) photograph with flash (b) photograph without flash (c) combination

Figure 12: Denoising of low-light images: By combining a flash photograph (a) and a no-flash
photograph (b), Eisemann and Durand render a new photograph (c) that has both the warm
lighting of the no-flash picture and the crisp details of the flash image. Figure reproduced from:
Flash photography enhancement via intrinsic relighting Eisemann et al. ACM SIGGRAPH
conference (c) 2004, Association for Computing Machinery, Inc. Reprinted by permission.
http://doi.acm.org/10.1145/1186562.1015778

(a) flash picture (b) no-flash picture (c) output of [Petschnigg et al., 2004]

Figure 13: By combining a flash photograph (a) and a no-flash photograph (b),
Petschnigg et al. render a new photograph (c) that has both the warm lighting of the
no-flash picture and the crisp details of the flash image. Figure reproduced from: Digi-
tal photography with flash and no-flash image pairs Petschnigg et al. ACM SIGGRAPH
conference (c) 2004, Association for Computing Machinery, Inc. Reprinted by permission.
http://doi.acm.org/10.1145/1186562.1015777

4.2.4 Multispectral Fusion

Bennett et al. [2007] show how to exploit infra-red data in addition to standard RGB data to
denoise low-light video streams. They use the dual bilateral filter, a variant of the bilateral
filter with a modified range weight that account for both the visible spectrum (RGB) and the
infra-red spectrum:

DBF [RGB ]p =
1

Wp

∑
q∈S

Gσs(||p− q||) GσRGB
(||RGBp − RGBq||) GσIR

(|IRp − IRq|) RGBq

(5)
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where RGBp is a 3-vector representing the RGB component at pixel p, and IRp the measured
infra-red intensity at the same pixel p. Bennett et al. show that this combination better
detects edges because it is sufficient for an edge to appear in one of the channels (RGB or
infra-red) to be accounted for. In combination with temporal filtering, they demonstrate that
it is possible to obtain high-quality video streams from sequences shot in very low light.

4.2.5 Orientation Smoothing

Paris et al. [2004] use the bilateral filter to smooth the 2D orientation field that they compute
in the context of hairstyle modeling. They propose a measure scheme that yields a per-pixel
evaluation of the local orientation. However, these measures are not equivalently precise on
the whole image and a few pixels have erroneous values due to the complex nature of hair
images. Paris et al. evaluate the success of their measure at pixel p using the variance Vp

and incorporate it into the filter. In Paris’ setup, several illumination conditions are available
for each pixel. The maximum difference Γ among all illuminations is also used. Considering
that the orientation is an angle α between 0 and π, averaging is performed using a mapping
onto a complex exponential: α ∈ [0, π[ �→ exp

(
2iα
) ∈ C, leading to the filter:

ρ exp(2i FParis(α)p) =
∑
q

Gσs(||p− q||) GσV
(Vp/Vq) GσΓ

(
Γ(p,q)

)
exp(2i αq) (6)

Note that this filter acts upon orientation and thus through a mapping onto the complex
plane. Only the argument of the result is used in Paris’ application, the amplitude ρ is
discarded although, if needed, it could be used as an equivalent of the standard deviation in
the scalar case [Watson, 1983]. This filter illustrates how application-specific knowledge can
be incorporated in bilateral filtering.

(a) zoom on input image (b) orientations before bilateral filtering (c) orientations after bilateral filtering

Figure 14: Paris et al. [2004] smooth their orientation measure using a variant of bilateral
filtering in which a mapping to the complex plane C is used. Figure reproduced from [Paris,
2004].

13



4.3 Texture and Illumination Separation, Tone Mapping, Retinex, and

Tone Management

Oh et al. [2001] described how to separate an image into a large-scale component and a small-
scale component using bilateral filtering. With this decomposition, they edit texture in a pho-
tograph. Durand and Dorsey [2002] use a similar decomposition for tone mapping. Elad [2005]
followed the same strategy to estimate the illumination and albedo of the photographed scene.
Bae et al. [2006] extended this approach to manipulate the look of a photograph. We detail
these applications in the following sections.

4.3.1 Texture and Illumination Separation

In the context of image-based modeling, Oh et al. [2001] turn the structure-removal aspect
of the bilateral filter into an advantage: By using a sufficiently large range parameter σr, the
bilateral filter successfully removes the variations due to texture while preserving larger dis-
continuities stemming from illumination changes and geometry. Their technique is motivated
by the fact that illumination variations typically occur at a larger scale than texture patterns.
To extract the illumination component, they derive a variant of the iterated bilateral filter
for which the initial image is always filtered. The successive estimates are used only to refine
the range weight:

B̃Fi+1[I]p =
1

Wp

∑
q∈S

Gσs(||p− q||) Gσr

(
B̃Fi[I]p − B̃Fi[I]q

)
Iq,

with B̃F0[I] = I.

In addition, since a depth estimate is available at each image pixel, they adapt the spatial
Gaussian size and shape to account for depth foreshortening. At each pixel, a plane tangent
to the local geometry is estimated, and the spatial Gaussian is set such that it is isotropic in
this tangent plane, which results in an anisotropic Gaussian once projected onto the image
plane.

4.3.2 Tone Mapping

Durand and Dorsey [2002] show that the use of bilateral filtering can be extended to iso-
late small-scale signal variations including texture but also small details of an image. They
demonstrate this property in the context of tone mapping whose goal is to compress the in-
tensity values of an high-dynamic range image to visualize it on a low-dynamic range display.
Naive solutions such as uniform scaling or gamma correction yields unsatisfactory results since
scene details are lost because of intensity compression. Durand and Dorsey’s solution is to
isolate the details before compressing the intensity. They apply the bilateral filter on the
log-intensities of the HDR image, scale down uniformly the result, and add back the filter
residual, thereby ensuring that the small-scale details have not been compressed during the
process. This strategy is similar to the one adopted by Tumblin and Turk [1999] but the use
of the bilateral filter enables a significant speed-up compared to the partial derivative filter
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proposed by Tumblin and Turk, as well as enhanced stability. Figure 15 shows an HDR image
tone-mapped with Durand and Dorsey’s technique.

(a) input (b) naive compression

(c) compression after Gaussian decomposition (d) output of [Durand and Dorsey, 2002]

Figure 15: Tone Mapping: Direct display of a HDR image (a) is not satisfying because of
over- and under-exposed areas. Compressing the intensity values solves this problem but
details in clouds and in the city below the horizon are barely visible (b). Isolating the details
using Gaussian blur brings back the details but incurs halos near contrasted edges (e.g.,
near the tree silhouettes) (c). Durand and Dorsey use the bilateral filter to isolate the small
variations of the input image without incurring halos (d). Figure reproduced from: Fast
bilateral filtering for the display of high-dynamic-range images Durand and Dorsey ACM
SIGGRAPH conference (c) 2002, Association for Computing Machinery, Inc. Reprinted by
permission. http://doi.acm.org/10.1145/566570.566574

4.3.3 Retinex

Elad [2005] proposes a different interpretation of the tone-mapping technique of Durand and
Dorsey using the retinex theory that seeks a separation of images into illumination and albedo.
Under the assumption that scene objects do not emit light, illumination values are greater
than the measured intensities since objects always absorb part of the incoming light. Elad
adapts the bilateral filter to ensure that the filtered result fulfills this requirement and is an
upper envelop of the image data. He replaces the range weight Gσr by a truncated Gaussian
H ×Gσr where H is a step function whose value is 1 for non-negative inputs and 0 otherwise.
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As a consequence, at a given pixel p, the local averaging includes only values greater than
intensity at p and guarantees a filtered value above the input intensity.

4.3.4 Tone Management

Bae et al. [2006] build upon the separation between large scale and small scale of Durand
and Dorsey’s technique [2002] and describe a sophisticated technique to transfer the visual
look of an artist picture onto a casual photograph. They explore a larger space of image
modifications by applying an arbitrary transfer function to the large-scale component. With
histogram matching, they construct a transfer function that matches the global contrast and
brightness of the model photograph. They also show that the small-scale component can
be modified in order to vary the amount of texture visible in the image. To this end, they
introduce the notion of textureness that quantify the local degree of texture of an image using
cross bilateral filtering. With H the high frequencies of the image log-intensity log I, the
textureness is defined by CBF [|H| , log I], that is the amplitude of the high frequencies are
locally averaged while respecting the edges of the input image.

(a) input (b) result after after contrast
and “textureness” increase

Figure 16: Bae et al. [2006] use the bilateral filter to separate and process separately the
large-scale and small-scale variation of an image. This example illustrates an increase of
the global image contrast and an increase of the amount of texture. Figure reproduced
from: Two-scale tone management for photographic look Bae et al. ACM SIGGRAPH
conference (c) 2006, Association for Computing Machinery, Inc. Reprinted by permission.
http://doi.acm.org/10.1145/1141911.1141935

4.4 Three-dimensional Fairing

Jones et al. [2003] extend bilateral filtering to meshes. The difficulty compared to images
is that all three xyz coordinates are subject to noise, data are not regularly sampled, and
the z coordinate is not a function of x and y unlike the pixel intensity. To smooth a mesh,
Jones et al. assume that it is locally flat. Under this assumption and in absence of noise, a
vertex p belongs to the plane tangent to the mesh at any nearby vertex q. With πq(p) the
projection of p onto the plane tangent to the mesh at q, ideally we have p = πq(p). However,
because of noise and because the mesh is not flat everywhere, this relation does hold in general.
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To smooth the mesh, Jones et al. average the position of p predicted by πq(p), they apply a
spatial weight Gσs(||p− q||) which ensures that only nearby points are considered. They add
a term Gσr(||p − πq(p)||) that weights down outliers, i.e. the predictions πq(p) that are far
away from the original position p. Using a term aq to account for the sampling density, the
resulting filter is:

FJones(p) =
1

Wp

∑
q

aq Gσs(||p− q||) Gσr(||p− πq(p)||) πq(p) (7)

To improve the results, they mollify the mesh normals used to estimate the tangent planes [Hu-
ber, 1981; Murio, 1993], that is, they apply a low-pass filter on the normals. This mollification
is akin to the pre-filtering step described by Catté et al. [1992] for PDE filters. Figure 17
shows a sample result.

(a) input mesh (b) smoothed mesh

Figure 17: Jones et al. [2003] have adapted the bilateral filter to smooth three-dimensional
meshes while preserving their most prominent features. Figure reproduced from: Non-
iterative, feature-preserving mesh smoothing Jones et al. ACM SIGGRAPH confer-
ence (c) 2003, Association for Computing Machinery, Inc. Reprinted by permission.
http://doi.acm.org/10.1145/1201775.882367

Fleishman et al. [2003] simultaneously proposed a similar approach (Figure 18). The main
difference with the technique of Jones et al. is the way the flat neighborhood assumption is
expressed. Fleishman et al. use the mesh normal np at p and project neighbors onto it. With
q is such a neighbor, q should project on p, that is: p + [(q − p) · np] np = p. This results
in the following variant of the bilateral filter:

FFleishman(p) = p +
np

Wp

∑
q

Gσs(||p− q||) Gσr(|(q − p) · np|) [(q − p) · np] (8)

The projection on the normal can be rewritten using the plane projection operator π used by
Jones et al.: [(q − p) · np] np = q − πp(q). This leads to the following expression equivalent
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to Equation (8):

FFleishman(p) = p +
1

Wp

∑
q

Gσs(||p− q||) Gσr(||q− πp(q)||) (q− πp(q)
)

(9)

These two formulations underlines the differences between the approaches of Jones et al. and
Fleishman et al.. Equation (8) shows that, unlike Jones et al., Fleishman et al. guarantee no
vertex drift by moving p only along its normal np. On the other hand, Fleishman et al. do
not compensate for the density variations. Furthermore, Equation (9) shows that the weights
between both approaches are similar except that Jones et al. projects p on the tangent plane
at q and thus exploit both the position and normal of all neighbors q, whereas Fleishman et al.
projects q on the tangent plane at p, thereby exploiting first-order information only from the
vertex p. This suggests an hybrid filter that we have not yet evaluated:

Fhybrid(p) = p +
1

Wp

∑
q

aq Gσs(||p− q||) Gσr(||p− πq(p)||) (q − πp(q)
)

(10)

In addition to these differences in estimating the vertex positions, Fleishman et al. advocate
iterating the filter three times to smooth further the mesh geometry. Wang [2006] refines the
process by explicitly detecting the sharp-edge vertices. He remeshes the model at these edges
to ensure that sharp features are correctly represented by an edge between two triangles.

(a) input (b) output of [Fleishman et al., 2003]

Figure 18: Fleishman et al. [2003] have adapted the bilateral filter to smooth three-
dimensional meshes while preserving their most prominent features. Figure repro-
duced from: Bilateral mesh denoising Fleishman et al. ACM SIGGRAPH confer-
ence (c) 2003, Association for Computing Machinery, Inc. Reprinted by permission.
http://doi.acm.org/10.1145/1201775.882368

Later, Jones et al. [2004] refined their technique to filter normals. Applying a geometric
transformation f to the 3D space, that is x ∈ R

3 �→ F (x), transforms the normals by the
transposed inverse of the Jacobian of F . The Jacobian of F is a 3 × 3 matrix that captures
the first-order deformation induced by F and is defined by Jij(F ) = ∂Fi/∂xj where Fi is
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the ith coordinate of F , and xj the jth coordinate of x. Jones et al. shows that iteratively
transforming the normals by J−T(FJones) smoothes the normals of a model while respecting
its edges and without moving its vertices. They argue that not moving the vertices yields a
better preservation of the fine details of the meshes.

Miropolsky and Fischer [2004] propose a variant of bilateral filtering to smooth and dec-
imate 3D point clouds. They assume that a normal np is known for each point p. They
overlay a regular 3D grid on top of the points and determine a representative point for each
grid cell by taking into account the point location and normal. With c the cell center and nc

the mean normal of the cell points, they propose:

FMiropolsky(c) =
1

Wp

∑
q

Gσs(||c − q||) Gσr(nc · nq) q (11)

4.5 Other Applications

4.5.1 Optical Flow

Xiao et al. [2006] apply bilateral filtering to regularize the optical flow computation. They use
an iterative scheme to refine the flow vectors between a pair of images. Each iteration consists
in two steps: first the vectors are adjusted using a scheme akin to Lucas-Kanade [1981], then
the flow vectors are smoothed using a modified version of bilateral filtering that has two
additional terms, one accounting for flow similarity, and one that ensures that occluded regions
are ignored during averaging. This scheme also “fills in” occluded regions, that is pixels visible
in one image of the pair but that are hidden in the other one. These occluded points gather
information from pixels outside the occluded region covered by the bilateral filter kernel,
and the range weight ensures that only similar points contribute, thereby avoiding diffusing
data from the “wrong side of the occlusion”. An important feature of this technique is that
it actually regularize the computation i.e. the bilateral filter does not optimize a tradeoff
between a data term and smoothness term, it only makes the data smoother. Nonetheless,
since bilateral filtering is interleaved with an optimization step, the process as a whole is a
regularization. It can be seen as a progressive refinement of the initial guess of a steepest-
slope optimization. Sand and Teller [2006] accelerate this technique by restricting the use of
bilateral filtering near the flow discontinuities.

4.5.2 Depth Map from Luminance

Khan et al. [2006] use bilateral filtering to process the luminance channel of an image and
obtain a pseudo-depth map that is sufficient for altering the material appearance of the
observed object. The originality of this use of the bilateral filter is that the smoothing power
of the bilateral filter determines the geometric characteristics of an object. For instance, a
smaller intensity tolerance σr results in a depth map that looks like “engraved” with the
object texture because the intensity patterns are well preserved and directly transferred as
depth variations.
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4.5.3 Video Stylization

Winnemöller et al. [2006] iterate the bilateral filter in order to simplify video content and
achieve a cartoon look (Figure 19). They demonstrate that the bilateral filter can be com-
puted in real time at video resolution using the numerical scheme of Pham and van Vliet [2005]
on modern graphics hardware. They demonstrate that bilateral filtering is an effective pre-
processing for edge detection: filtered images trigger fewer spurious edges. To modulate the
smoothing strength of the bilateral filter, they modify it to control the degree of edge preser-
vation. The range weight Gσr is replaced by (1 − m) · Gσr + m · u where m is a function
varying between 0 and 1 to control edge preservation, and u defines the local importance of
the image. To define u and m, Winnemöller et al. suggest using an eye tracker [DeCarlo and
Santella, 2002], a computational model of saliency [Itti and Koch, 2001], or a user-painted
map.

(a) input (b) abstracted output

Figure 19: Sample abstraction result from the method by Winnemöller et al. [2006]. Re-
produced from: Real-time video abstraction Winnemöller et al. ACM SIGGRAPH con-
ference (c) 2006, Association for Computing Machinery, Inc. Reprinted by permission.
http://doi.acm.org/10.1145/1179352.1142018

4.5.4 Demosaicking

Demosaicking is the process of recovering complete color information from partial color sam-
pling through a Bayer filter (see Figure 20). Ramanath and Snyder [2003] interpolate missing
color values of Bayer patterns [Bayer, 1976]. These patterns are used in digital cameras where
each sensor measures only a single value among red, green, and blue. Bayer patterns are
such that, although each pixel is missing two color channels, adjacent pixels have measures
in these missing channels. Demosaicking is thus a small-scale interpolation problem, values
are interpolated from neighbor pixels. Directly interpolating the values yield blurry images
because edges are ignored. Ramanath and Snyder start from such an image and refine the
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result with bilateral filtering. They use a small spatial neighborhood to consider only the
pixels within the 1-ring of the filtered pixel, and also ensure that measured values are not
altered. The validation shows that the obtained results compare favorably to state-of-the-art
techniques although the computational cost is higher.

Figure 20: Bayer patterns are such that, although each pixel is missing two color channels,
adjacent pixels have measures in these missing channels. Figure reproduced from Wikipedia
(http://en.wikipedia.org/wiki/Bayer filter).

5 Implementation

In this section, we describe how the bilateral filter can be implemented efficiently. We begin
with the brute-force approach as reference. We then describe the techniques based on separa-
ble kernels of Pham and van Vliet [2005; 2006], the local histogram of Weiss [2006], and the
bilateral grid [Paris and Durand, 2006a; Chen et al., 2007].

5.1 Brute Force

A direct implementation of the bilateral filter consists in two nested loops, as presented in
Table 1.

The complexity of this algorithm is O
(
|S|2

)
, where |S| the size of the spatial domain

(i.e. the number of pixels). This quadratic complexity quickly makes the computational cost
explode for large images.
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For each pixel p in S
1. Initialization: Ip = 0, Wp = 0

2. For each pixel q in S
(a) w = Gσs(||p− q||)Gσr(Ip − Iq)

(b) Ip+= wIq

(c) Wp+= w

3. Normalization: Ip = Ip /Wp

Table 1: Algorithm for the direct implementation of bilateral filter

A classical improvement is to restrict the inner loop to the neighborhood of the pixel p.
Typically, one considers only the pixels q such that ||p− q|| ≤ 2σs. The rationale is that the
contributions of pixels farther away than 2σs is negligible because of the spatial Gaussian.
This leads to a complexity on the order of O (|S| σs

2
)
. This implementation is efficient for

small spatial kernels, that is, small values of σs but becomes quickly prohibitive for large
kernels because of the quadratic dependence in σs.

5.2 Separable Kernel

Pham and van Vliet [2005] propose to approximate the 2D bilateral filter by two 1D bilateral
filters applied one after the other. First, they filter each image column and then each raw.
Each time, they use the brute force algorithm restricted to a 1D domain, that is, the inner
loop on pixels q is restricted to pixels on the same column (or raw) as the pixel p. As a
consequence, the complexity becomes O (|S| σs) since the considered neighborhoods are 1D
instead of 2D. This approach yields significantly faster running times but the performance
still degrades linearly with the kernel size. Furthermore, this approach computes an axis-
aligned separable approximation of the bilateral filter kernel. Although this approximation is
satisfying for uniform areas and straight edges, it poorly matches more complex features such
as textured regions. As a consequence, axis-aligned “streaks” appear with large kernels in
such regions (Figure 21). Pham [2006] describes how to steer the separation according to the
local orientation in the image. This approach improves the quality of the results, especially on
slanted edges, but is computationally more involved since the 1D filters are not axis aligned
anymore.
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5.3 Local Histograms

Weiss [2006] considers the case where the spatial weight is a square box function, that is, he
rewrites the bilateral filter as:

BF [I]p =
1

Wp

∑
q∈Nσs(p)

Gσr(Ip − Iq)Iq (12a)

Wp =
∑

q∈Nσs(p)

Gσr(Ip − Iq) (12b)

where Nσs(p) = {q, ||p− q||1 ≤ σs}. In this case, the result depends only on the histogram of
the neighborhood Nσs(p) because the actual position of the pixel within the neighborhood is
not taken into account.

Following this remark, Weiss exposes an efficient algorithm to compute the histogram of
the square neighborhoods of an image. We refer to his article for the detail of the algorithm.
The intuition behind his approach is that the neighborhoods Nσs(p1) and Nσs(p2) of two
adjacent pixels p1 and p2 largely overlap. Based on this remark, Weiss describes how to
efficiently compute the histogram of Nσs(p1) by exploiting the similarity with the histogram
of Nσs(p2). Once the histogram of Nσs(p) is known for a pixel p, the result of the bilateral
filter BF [I]p (Eq. 12) can be computed since each histogram bin indicates how many pixels
q have a given intensity value I. A straightforward application of this technique produces
band artifacts near strong edges, a.k.a. Mach bands, because a frequency spectrum of the
box filter is not band-limited. Weiss addresses this issue by iterating three times his filter,
which effectively smoothes out the artifacts.

Weiss [2006] demonstrates that his algorithm has a complexity on the order of O (|S| log σs)
which makes it able to handle any kernel size in short times. Furthermore, his algorithm is
designed such that it can take advantage of the vector instruction set of modern CPUs,
thereby yielding running times on the order of a second for images with several megapixels.
The downside of this algorithm is that it deals with color images channel per channel which
can introduce bleeding artifacts and that its extension to cross bilateral filtering is unclear.

5.4 Bilateral Grid

Paris and Durand [2006a] have reformulated the bilateral filter in a higher-dimensional ho-
mogeneous space. They described a new image representation where a gray-level image is
represented in a volumetric data structure that they named the bilateral grid. In this rep-
resentation, a 2D image I is represented by a 3D grid Γ where the first two dimensions of
the grid correspond to the pixel position p and the third dimension correspond to the pixel
intensity Ip. In addition, this 3D grid stores homogeneous values, that is, the intensity value I

is associated to a non-negative weight w and stored as an homogeneous vector (wI,w).
Using this concept, Paris and Durand demonstrate that the bilateral filter can be computed

in three steps, as presented in Table 2. We refer to [Paris and Durand, 2006a] for qualitative
explanations given on 1D signals.

The benefit of this formulation is that GB [Γ] is a band-limited signal because it results
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1. Given a 2D image I, let us define the vector-valued grid
Γ : S ×R → R

2 so that

Γ(px, py, r) =

{
(I(px, py), 1) if r = I(px, py)
(0, 0) otherwise

.

2. Perform a Gaussian smoothing of Γ, for each component
independently

GB [Γ] (px, py, r) = Gσs,σr ⊗ Γ(px, py, r),

where Gσs,σr is a 3D Gaussian with σs as parameter along
the two spatial dimensions and σr along the range
dimension.

3. Extracting the result: For a pixel p with initial
intensity Ip, we denote (w̃I, w̃) the value at position
(px, py, Ip). The result of the bilateral filter is

BF [I]p = w̃I/w̃.

Table 2: Reformulation proposed by Paris and Durand [2006a]

from a Gaussian convolution which a low-pass filter. Paris and Durand use this argument to
downsample the grid Γ. As a result, they deal with fewer data and achieve performance on the
order of a second for images with several megapixels. Chen and colleagues further improved
the performances by mapping the algorithm onto modern graphics hardware, obtaining run-
ning times on the order of a few milliseconds. Paris and Durand advice to use the Gaussian
bandwidth parameters σs and σr as sampling rates for the grid. This yields a complexity of
O
(
|S| + |S|

σs
2
|R|
σr

)
where |S| is the size of the spatial domain (i.e. the number of pixels) and

|R| is the size of the range domain (i.e. the extent of the intensity scale).
This approach can be easily adapted to cross bilateral filtering and color images. The

downside is that color images require a five-dimensional grid which no longer maps nicely
onto graphics hardware and that requires large amount of memory for small kernels (10 pixels
or less).

5.5 Discussion

The implementation is a crucial choice to achieve satisfying results with good performances.
Table 3 summarizes the complexity of the various implementations we described.

When graphics hardware is available, the method of Chen et al. [2007] based on the bilat-
eral grid is to be preferred because it achieves high quality outputs and real-time performances
even on high-resolution images and videos. If only the CPU is available, the choice is split
between the local-histogram method of Weiss [2006] and the bilateral grid of Paris and Du-
rand [2006a]. To process color images or compute a cross bilateral filter, the bilateral grid
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Brute force (Section 5.1) O
(
|S|2

)
Separable kernel (Section 5.2) O (|S|σs)

Local histograms (Section 5.3) O (|S| log σs)

Bilateral grid (Section 5.4) O
(
|S| + |S|

σs
2
|R|
σr

)
Table 3: Recapitulation of algorithms’ complexity

provides a satisfying solution, especially with large kernels. To process gray-level images with
kernels of any size, e.g. in an image-editing package where users can arbitrarily choose the
kernel size, the local-histogram approach is preferable because it consistently yields short run-
ning times. On color images, this approach can yield less satisfying results since channels are
processed independently, which can cause color bleeding (Figure 21).
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(a) input (876x584)

(b) input (c) exact bilateral filter using CIE Lab

(d) bilateral-grid implementation using “per-channel RGB”
(0.48s, PSNRRGB = 38dB, PSNRLab = 34dB)

(e) bilateral-grid implementation using RGB
(8.9s, PSNRRGB = 41dB,  PSNRLab = 39dB)

(f) separable-kernel implementation using CIE Lab
(5.8s, PSNRRGB = 42dB, PSNRLab = 42dB)

(g) bilateral-grid implementation using CIE Lab
(10.9s, PSNRRGB = 46dB, PSNRLab = 46dB)

Figure 21: Comparison of different strategies for filtering a color image (a,b). Processing the
red, green, and blue channels independently results in color bleeding that makes the cross dis-
appear in the sky (d). Dealing with the RGB vector improves this aspect but some bleeding
still occurs (e). In contrast, working in the CIE-Lab space achieves satisfying results (c,g).
The separable-kernel implementation is fast but incurs axis-aligned streaks (f) that may unde-
sirable in a number of applications. These remarks are confirmed by the numerical precision
evaluated with the PSNR computed the RGB and CIE-Lab color spaces. The contrast of the
close-ups has been increased for clarity purpose. This figure is reproduced from [Paris and
Durand, 2006b].
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6 Theoretical Results and Relationship with Other Frame-

works

6.1 About This Section

We present two kinds of results.

• The first kind of results is related to the link of bilateral filter with other mathematical
frameworks. Section 6.2 presents the link of bilateral filter with partial differential
equations (detailed further in Section 7). Section 6.3 present the link of bilateral filter
with robust statistics.

• The second kind of results is related to interpretations of the bilateral filter. Section
6.4 show the link with local histograms. Section 6.5 show that bilateral filter which is a
nonlinear filter can seen as a linear filtering process in an extended space.

6.2 Partial Derivative Equations and Over-Sharpening

In the following section, we summarize the link of bilateral filtering with filters based on
partial derivative equations (PDE). We dedicate Section 7 to the details of this relationship.

The bilateral filter smoothes images while preserving strong edges. Numerous filters based
on PDEs qualitatively achieve the same result. This motivated several researchers to study
possible links between both approaches. Durand and Dorsey [2002] have showed that the
bilateral filter restricted to the four adjacent neighbors of each pixel actually corresponds to
a discrete version of Perona and Malik model [1990]:

∂I

∂t
= div

(
Gσr(||∇I||) ∇I

)
.

This result has been extended by Elad [2002] and Barash and Comaniciu [2004] who have
demonstrated that the bilateral filter can be seen as the sum of several Perona–Malik filters
at different scales, that is, the image derivatives are computed with pixels at a distance, not
only with adjacent pixels.

In a continuous setting, Buades et al. [2006] have characterized that for “small neighbor-
hoods”, the Yaroslavsky filter (i.e., a bilateral filter using a box function as spatial weight)
behaves as the Perona-Malik filter, and in particular, that it suffers from shock formation,
a.k.a. over-sharpening, that creates aliased edges from smooth ones. The proof of Buades et al.
is based on an asymptotic study which relies on the fact that the image is well approximated
by its second-order Taylor expansion. Thus, their result holds for any neighborhood as long
as it covers a sufficiently regular area such a skin or sky region. We refer to Section 7 for
more details.

In order to prevent over-sharpening, Buades et al. proposed a variant to the bilateral
filter, the regression filter which we discuss in Section 7.5.
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6.3 Robust Statistics

Durand and Dorsey [2002] have studied the bilateral filter in the framework of robust statis-
tics [Huber, 1981; Hampel et al., 1986] in a similar manner to the work of Black et al. [1998]
on PDE filters. They have showed that the range weight can be seen as a robust metric,
that is, it differentiates between inliers and outliers. The bilateral filter replaces each pixel
by a weighted average of its neighbors. The weight assigned to each neighbor determines its
influence on the result and is crucial to the output quality. In this context, robust statistics
estimates if a pixel is relevant, i.e. is an inlier, or if it is not, i.e. is an outlier. The strategy
followed by the bilateral filter is that pixels with different intensities are not related and should
have little influence on each other, whereas pixels with similar intensities are closely related
and should strongly influence each other. The way that this intensity difference actually con-
tributes is defined by the range weight. The most common choice is a Gaussian function Gσr .
However, Durand and Dorsey [2002] have underscored that this Gaussian function is only
one of the possible choices among a variety of robust weighting functions (cf. Figure 22-top),
a.k.a. stopping functions.
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(a) constant (not robust)

WEIGHTING FUNCTIONS

INFLUENCE FUNCTIONS

Figure 22: Sample weighting functions with their corresponding influence functions. Repro-
duced from [Black et al., 1998; Durand and Dorsey, 2002].

These functions define the weights assigned to a pixel according to its difference of intensity
with the center pixel. For instance, a classical non-robust mean assigns the same weight to all
pixels. In comparison, robust functions have a bell profile that assign lower weights to pixels
with a different intensity. The differences lie in the fall-off rate which defines how narrow is
the transition between inliers and outliers, and in the tail value: either non-zero, meaning
that outliers still have some limited influence, or zero, meaning that outliers are completely
ignored. This behavior is better observed on the influence function (Fig. 22-bottom) that
shows the variations of the output depending on the pixel intensity. The constant weight of
classical averaging is not robust because its influence function is unbounded which reflects the
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fact that a single pixel can have an unlimited influence on the mean value, e.g. a single very
bright pixel can make the average arbitrarily high. In contrast, robust influence functions
are bounded, showing that a single pixel cannot modify the output beyond a certain point.
Some robust functions such as the Gauss, Tukey, and Lorentz functions are even redescending,
reflecting the fact that pixels with a large intensity difference are considered “irrelevant” and
ignored, i.e. they have no influence on the output.

Durand and Dorsey [2002] showed that these concepts can be applied to the bilateral filter
and that the choice of the range function defines how the pixels across are handled. For
instance, with the classical Gaussian function, pixels across edges still have some influence
though very limited; with a Tukey function, these pixels would be ignored. However, according
to Durand and Dorsey’s experiments, the Gauss and Tukey functions perform better for their
tone-mapping operator. As far as we know, these options have not been tested with other
applications.

6.4 Local Histograms

Van de Weijer and van den Boomgaard [2001] have studied the bilateral filter using local
histograms. A local histogram is similar to a standard histogram except that pixels are
weighted by an influence function. Typically, local histograms are defined using Gaussian
windows, that is, each pixel q is weighted by Gσs(||p− q||) where p is the location at which
the histogram is computed. Koenderink and Van Doorn [1999] have advocated the use of such
local histograms to study image properties.

Van de Weijer and van den Boomgaard showed that the bilateral filter is driven by the
modes of the local histograms. Each pixel “moves” toward the maximum of the local mode
it belongs to. Figure 23 illustrates this property. This behavior can be interpreted in terms
of robust statistics: pixels in the same mode are considered as inliers whereas pixels in other
modes are outliers, i.e. ignored. Section 6.3 further develop this aspect.

Weiss [2006] has built his fast numerical scheme on this local-histogram interpretation of
the bilateral filter (cf. Section 5.3).

input neighborhood local histogram

local
mode

pixel
intensity

%

BF

Figure 23: Van de Weijer and van den Boomgaard [2001] showed that the bilateral filter is
driven by the modes of the local histograms. Each pixel “moves” toward the maximum of
the local mode it belongs to. In this example, the center pixel is dark and bilateral filtering
makes it move toward the maximum of the modes made of low-intensity pixels.
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6.5 Linear Filtering

Paris and Durand [2006a] have demonstrated that the bilateral filter corresponds to a Gaussian
convolution in a higher-dimensional, homogeneous space. Paris and Durand consider the S×R
domain and represent an image I as a 3D grid Γ:

Γ(px, py, r) =

⎧⎨⎩
(
I(px, py), 1

)
if r = I(px, py)

(0, 0) otherwise
(13)

With this representation, they demonstrate that bilateral filtering exactly corresponds to
convolving Γ with a 3D Gaussian whose parameters are (σs, σs, σr): Γ̃ = Γ ⊗ Gσs,σs,σr . They
show that the bilateral filter output is BF [I] (px, py) = Γ̃

(
px, py, I(px, py)

)
. This process is

illustrated in Figure 24. This result enables the use of classical techniques from linear image
processing to speed up the computation (Section 5.4).
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Figure 24: Overview on a 1D signal of the reformulation of the bilateral filter as a linear con-
volution in a homogeneous, higher-dimensional space. Reproduced from [Paris and Durand,
2006a].
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6.6 Image Manifold

Sochen et al. [1998] have introduced the notion of image manifolds where an image I is
represented by a manifold M embedded in S ×R:

(px, py) ∈ S �→ M(px, py) =
(
px, py, I(px, py)

) ∈ S ×R (14)

With this representation, Barash [2002; 2004] has demonstrated that bilateral filtering is based
on the Euclidean distance of S×R instead of the manifold geodesic distance. Note that Paris
and Durand [2006a] used a similar metric but in a signal-processing context (Section 6.5).
Sochen et al. [2001] have also shown that the bilateral filter is an approximation to Gaussian
filtering using the geodesic metric (i.e. using distances measured on the image manifold M)
when the Gaussian kernel is small.

7 Mathematical Analysis of the Bilateral Filter using PDEs

7.1 About this Section

The goal of this section is to revisit the method of bilateral filter in a continuous setting to
show its relationship with another famous branch of restauration approaches: partial differen-
tial equations (PDE). Interestingly, we will show that bilateral filter can be seen under certain
conditions, as an approximation of the well-known Perona–Malik equation. Section 7.2 intro-
duces the continuous setting and notations. Section 7.3 presents the Gaussian filtering and
its low-pass property. Section 7.4 demonstrates the link between bilateral filter and nonlinear
PDE-based approaches. Finally Section 7.5 propose a way to overcome the classical problem
of staircase effect.

7.2 From Discrete to Continuous Setting

Until now, we considered an image as a dicrete set of pixel. Instead, in this section, we will
need to consider an image defined continuously, i.e., an analog image where space is no longer
discretized. The motivation becomes clear when one need for instance to define a notion of
derivative.

Formally, keeping the same notations, this introduces little changes in the formulation of
the bilateral filter. The only difference here is that sums are replaced by integrals: Positions
p and q now vary on a continuous domain.

7.3 Linear Filtering with Gaussian Blur Filtering

Let us first revisit the linear Gaussian blur presented in Section 3 in a discrete setting. For a
given image I, one defined the image GB[I] by

GB [I] (p) = (Gσ ⊗ I)(p) =
∫
Ω

Gσ(||p − q||)I(q) dq, ∀p. (15)
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In Section 3, we said that Gaussian filtering was a low-pass filter. Now, this property can
easily be proved in the continous setting, in the frequency domain. Let us define the Fourier
transform by

F [I](w) =
∫
R2

I(p) exp (−iw · p)dp,

where w ∈ R2. It is well known that

F [Gσ ⊗ I](w) = F [Gσ ](w)F [I](w),

and since

F [Gσ ](w) = exp

(
−||w||2

2/σ2

)
,

it follows that

F [Gσ ⊗ I](w) = exp

(
−||w||2

2/σ2

)
F [I](w),

i.e., the convolution by a Gaussian is a low-pass filter that inhibits high frequencies (oscillations
in the space domain). This explains why edges are also lost.

7.4 Nonlinear filtering with Neighborhood Filters

Buades et al. [2004; 2005a] revisit the notion of bilateral filter, that the designate by neigh-
borhood filtering. Here the notion of neighborhood must be understood broadly: neighboring
pixels, neighboring or similar intensities, or “neighboring neighborhoods.” Each of these
meanings will correspond to a specific filter. Interestingly, the authors also proved the link
between these filters and well-known PDEs such as the heat equation and the Perona–Malik
equation.

A general neighborhood filtering can be described as follows. Let I be an image to be
denoised and let wσs : R

+ → R
+ and wσr : R

+ → R
+ be two functions whose roles will be

to enforce respectively photometric and geometric locality (in Section 3, w and w are both
Gaussian kernels). Parameters σs and σr will measure the amount of filtering for the image I.
The filtered image at scale (σr, σs) is given by

BF [I](p) =
1

W (p)

∫
S

wσr(|I(q) − I(p)|) wσs(||p− q||)I(q)dq,

where W (p) is a normalization factor

W (p) =
∫
S

wσr(|I(q) − I(p)|) wσs(||p − q||)dq.

For simplicity we suppose that the image has been extended from the domain image S (a
rectangle) to the whole of R

2, by symmetry and periodicity.
With this formalism we can easily recover the classical spatial linear Gaussian filtering by
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choosing wσr ≡ 1 and wσs(t) = exp
(
− t2

σs
2

)
.

Now let us consider bilateral filters. As mentioned before, the idea is to take an average
of the values of pixels that are both close in gray level value and spatial distance. Of course
many choices are possible for the kernels wσr and wσs . Classical choices are

wσr(t) = exp
(
− t2

σr
2

)
and

wσs(t) = exp
(
− t2

σs
2

)
or wσs(t) = χB(p,σs)(t),

where χB(p,σs) denotes the characteristic function of the ball of center p and radius σs. With
the former choice of wσs , we get the SUSAN filter [Smith and Brady, 1997a] or the bilateral
filter [Tomasi and Manduchi, 1998] (see also Section 3):

Sσs,σr [I](p) =
1

W (p)

∫
R2

exp
(
−|I(q) − I(p)|2

σr
2

)
exp

(
−||q− p||2

σs
2

)
I(q)dq.

With the latter choice of wσs , we recover the Yaroslavsky filter

Yσs,σr [I](p) =
1

W (p)

∫
B(p,σs)

exp
(
−|I(q) − I(p)|2

σr
2

)
I(q)dq. (16)

The SUSAN and Yaroslavsky filters have similar behaviors. Inside a homogeneous region, the
gray level values slightly fluctuate because of the noise. Nearby sharp boundaries, between a
dark and a bright region, both filters compute averages of pixels belonging to the same region
as the reference pixel: edges are not blurred.

Interestingly, the estimation of the residue Iσs,σr(p)− I(p) gives some analogies with well-
known PDEs.

Theorem 7.1 Suppose I ∈ C2(S) and let σs, σr, and α > 0 such that σs, σr → 0 and σr =
O(σs

α). Let us consider the continuous function

g(t) =
1
3

t exp(−t2)
E(t)

for t 
= 0, g(0) =
1
6

where E(t) =

t∫
0

exp(−s2)ds.

Let f be the continuous function

f(t) = 3g(t) + 3
g(t)
t2

− 1
2t2

, for t 
= 0 and f(0) =
1
6
.

Then for x ∈ S,

• if α < 1, Yσs,σr [I](p) − I(p) ≈ ∆I(p)
6 σs

2,

• if α = 1, Yσs,σr [I](p) − I(p) ≈
[
g(σs

σr
||DI(p)||)ITT (p) + f(σs

σr
||DI(p)||)INN (p)

]
σs

2,
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• if 1 < α < 3
2 , Yσs,σr [I](p) − I(p) ≈ g(σs

1−α ||DI(p)||) [ITT (p) + 3INN (p)] σs
2,

where ITT = D2u
(

DI⊥
||DI|| ,

DI⊥
||DI||

)
and INN = D2u

(
DI
||DI|| ,

DI
||DI||

)
.

We refer to [Buades et al., 2005a] for the proof of the theorem. It is not difficult, somewhat
technical, and relies on a Taylor expansion of I(q) and the exponential function. More inter-
esting is the interpretation of this theorem. For α ranging from 1 to 3

2 an iterated procedure
of the Yaroslavsky filter behaves asymptotically as an evolution PDE involving two terms
respectively proportional to the direction T = DI⊥(p)

||DI(p)|| , which is tangent to the level passing

through p and to the direction N = DI(p)
||DI(p)|| , which is orthogonal to the level passing through

p. In fact, we may write

Yσs,σr [I](p) − I(p)
σs

2
= c1ITT + c2INN .

The filtering or enhancing properties of the model depend on the sign of c1 and c2. Following
Theorem 7.1, we have:

• If α < 1, then Yσs,σr [I](p)−I(p)
σs

2 ≈ ∆I(p)
6 , which corresponds to a Gaussian filtering.

• If α = 1, the neighborhood filter acts as a filtering/enhancing algorithm. Since the func-
tion g is positive (and decreasing) there is always a diffusion in the tangent direction, but
since the function I can take positive or negative values, we may have filtering/enhancing
effects depending of the values of ||DI(p)||. For example, if ||DI(p)|| > aσr

σs
, where a is

such that I(a) = 0, then we get an enhancing effect. Let us remark since g(t) → 0 as
t → ∞, points with large gradient are preserved.

• If 1 < α < 3
2 , then σs

σr
tends to infinity and g(σs

σr
||DI||) tends to zero and consequently

the original image is hardly deteriorated.

Finally, let us observe that when α = 1, the Yaroslavsky filter behaves asymptotically like
the Perona–Malik equation

∂I

∂t
= div( c( |∇I(t, x)|2)∇I(t, x)) = c(||DI||2)ITT + b(||DI||2)INN , (17)

where c : [0,+∞[→]0,+∞[ is a smooth decreasing function and b(s) = 2s c′(s) + c(s). By
choosing c(s) = g(

√
s) in (17) we get

∂I

∂t
= g(||DI||2)ITT + h(||DI||2)INN ,

with h(s) = g(s) + sg′(s). We have h(s) 
= f(s) but the coefficients in the tangent direction
for the Perona–Malik equation and the Yaroslavsky filter are equal, and the functions h and f

have the same behavior. Therefore both models share the same qualitative properties, which
can be observed in Figure 4. In particular, the staircase effect appears.
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7.5 How to Suppress the Staircase Effect?

When α = 1, the Yaroslavsky filter (16) can create unexpected features such as artificial
contours inside flat zones, also called the staircase effect (Figure 4). The main reason is the
difficulty to choose an appropriate threshold for the gradient. The origin of the staircase effect
can be explained with a 1-D convex increasing signal (respectively a 1-D increasing concave
signal) (Figure 25).

For each p, the number of points q such that I(p)−h < I(q) ≤ I(p) is larger (respectively
smaller) than the number of points satisfying I(p) ≤ I(q) ≤ I(p)+h. Thus, the average value
Yσs,h is smaller (respectively larger) than I(p). Since edges correspond to inflection points (i.e.,
points where I ′′ = 0), the signal is enhanced at inflection points; the discontinuities become
more marked. To overcome this difficulty, Buades et al. [Buades et al., 2005a] introduced an
intermediate regression correction in order to better approximate the signal locally. For every
p in a 2-D image, one searches for a triplet (a, b, c) minimizing∫

B(p,σs)

w(p,q)(I(q) − aq1 − bq2 − c)2dq, (18)

where w(p,q) = exp −|I(q)−I(p)|2
σr

2 , and then replacing I(p) by (apx − bpy − c). Let us denote
this improved version of the original Yaroslavsky filter by Lqσs,σr .

Theorem 7.2 Suppose I ∈ C2(S), and let σs, h > 0 be such that σs, σr → 0 and O(σs) =

O(σr). Let g be the continuous function defined by g(0) = 1
6 and g(t) = 8t2e−t2−8te−t2

E(t)+2E(t)2

t2(4E(t)2−8te−t2E(t))
,

for t 
= 0, where E(t) =
∫ t
0 e−s2

ds. Then

Lyσs,σrI(p) − I(p) ≈
[
1
6
Iξξ + g

(
σs

σr
||DI||

)
Iηη

]
σs

2. (19)

According to Theorem 7.2, the enhancing effect has disappeared; the coefficient in the normal
direction is now always positive and decreasing. When the gradient is large, the weighting
function in the normal direction tends to 0 and the image is filtered only in the tangent
direction. Figure 26 shows how regression can improve the results.
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x−h x x+h

u(x)−v

u(x)+v

u(x)

Yaroslavsky filter Linear regression

Figure 25: Yaroslavsky filter creates stepwise functions: The reason is that for each p, the
number of points q such that I(p) − h < I(q) ≤ I(p), is larger than the number of points
satisfying I(p) ≤ I(q) ≤ I(p) + h. This can be avoided with a local linear approximation.

Original image Bilateral filter result Correction of staircase effect

Figure 26: The staircase effect can be eliminated with regression (see Section 7.5).
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8 Extensions of Bilateral Filtering

8.1 About This Section

This section describes several extensions to the bilateral filter. Two main directions have been
followed. First, variants have been developed to better handle gradients by taking the slope of
the signal into account (Section 8.2). Second, bilateral filtering has been extended to handle
several images in order to better control the way edges are detected (Section 8.3).

8.2 Accounting for the Local Slope

Humans consistently identify at least three visually distinctive image features as ’edges’ or
boundaries: a sharp, step-like intensity change, a sharp, ridge- or valley-like gradient change,
or both. The bilateral filter is particularly good at preserving step-like edges, because the
range domain R filter averages together all similar values in within the neighborhood space
domain, and also assigns tiny to dissimilar values on the opposite side of the step, as shown
in Figure 5 helps maintain the step-like changes without smoothing.

Several researchers [Elad, 2002; Choudhury and Tumblin, 2003; Buades et al., 2005c] have
proposed extensions to the bilateral filter to improve edge-preserving results for ridge- and
valley-like edges as well. As explained rigorously by Elad [Elad, 2002] most noted that the
bilateral filter smoothes images towards a piecewise constant-intensity approximation of the
original signal, and instead, each proposes smoothing towards piecewise constant-gradient (or
low curvature) results instead.

θ

Figure 27: Filter extent for one scanline of an image.

8.2.1 Trilateral Filter

Sharp changes in gradients and large, high-gradient areas degrade the desirable smoothing
abilities of the bilateral filter. As shown for one image scan-line in Figure 27(b), we can
approximate the extent of the combined spatial and range filters as a rectangle centered
around each input pixel: position within this rectangle sets the weight assigned to all its
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Figure 28: Diffcult image features: (1) Ridge-like and valley-like edges, (2) high gradient
regions, (3) similar intensities in disjoint regions.

neighboring pixels. At ridge-like or valley-like edges, gradients change abruptly but intensities
do not, as shown in Figure 28 feature (1). Applying the bilateral filter here is troublesome,
because the rectangular filter extent encloses pixels that span the peak of the ridge or valley,
and the filter blends these intensities to form a “blunt” feature instead of the sharp, clean
edge with disjoint gradients. High gradient regions between ridge- or valley-like edges also
reduce the bilateral filter’s effectiveness. As shown in Figure 27(b) and Figure 28 feature (2)
the spatial filter extent (the box width) has little effect, as only a narrow portion of the input
signal falls within the box, and the range filter’s extent (box height) dominates the filtering.
Figure 28 feature (3) also shows that applying the bilateral filter near sharply peaked valley-
or ridge-like features may permit the spatial extent (box width) to include disjoint portions
of the input signal, averaging together image regions that may belong to unrelated objects in
the image.

The trilateral filter introduced by Choudhury and Tumblin [Choudhury and Tumblin,
2003] addressed these problems by combining modified bilateral filters with a pyramid-based
method to limit filter extent. First, they applied a bilateral filter to the image gradients to
help estimate the slopes any separate image regions. Using these slopes, they “tilt” the filter
extent of a bilateral filter applied to image intensity; this affine transform of the range filter,
as shown in Figure 27(c), restores the effectiveness of the spatial filter term. Finally, for each
output pixel, they limit the extent of this tilted bilateral filter to a connected set of pixel
that share similar filtered-gradient values. To reduce the substantial computing time required
to find these connected components, they describe a pyramid-like structure suitable for fast
evaluation. They also automatically set all but two of the parameters of their filtering method,
so that user control resembles the bilateral filter’s two parameters. When applied to tone
mapping or mesh fairing, the the trilateral filter results in Figures reffig:trilat-HDRandMesh
are visibly comparable or better than the bilateral filter alone, but these improvements come
at a high computational cost.

8.2.2 Regression Filter

Buades et al. [2006] have demonstrated that replacing the mean of neighboring pixels by a
linear regression prevents over-sharpening. Each pixel is assigned the same weight as with a
classical bilateral filter but instead of averaging their value, one computes a linear regression
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Figure 29: large, smoothly varied gradients can cause ’stair-stepping’ in isotropic diffusion,
and weak smoothing in the Bilateral filter. Higher-order PDEs (e.g. LCIS) and bilateral
variants that smooth towards piecewise linear results form stairsteps in gradients instead.

of the pixel values, i.e. approximates locally the image by a plane. The output of the filter is
the plane value at the pixel location. Section 7.5 provides more details on this filter.

8.2.3 Symmetric Bilateral Filter

Elad [2002] proposes to account for the image “slope” by comparing the intensity of the
filtered pixel with the average of another pixel and its symmetric point:

SBF [I]p =
1

Wp

∑
q∈S

Gσs(||p− q||) Gσr(||Ip − Is||) Is (20)

where Is is the average between the pixel q and its symmetric with respect to p, that is:
Is = 1

2

(
I(q) + I(2p − q)

)
. As far as we know, the performance of this extension is unclear

since it has not been extensively tested.

8.3 Using Several Images

8.3.1 Cross and Joint Bilateral Filter

Eisemann and Durand [2004] and Petschnigg et al. [2004] introduced simultaneously the cross
bilateral filter, also known as the joint bilateral filter, a variant of the bilateral filter that
decouples the notion of edges to preserve from the image to smooth. Given an image I, the
cross bilateral filter smoothes I while preserving the edges of a second image E. In practice,
the range weight is computed using E instead of I:

CBF [I,E]p =
1

Wp

∑
q∈S

Gσs(||p− q||) Gσr(Ep − Eq) Iq,

with Wp =
∑
q∈S

Gσs(||p− q||) Gσr(Ep − Eq).

Figure 30 shows a simple use of cross bilateral filter to filter a low-light picture.
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(a) no-flash input (b) bilateral filter (c) flash input (d) cross bilateral filter

Figure 30: Simple example of cross bilateral filtering. The low-light image (a) is too noisy to
yield satisfying result if filtered on its own with bilateral filter, see result in (b). Using a flash
picture of the same content (c) and cross bilateral filtering produces a better result (d). Eise-
mann and Durand [2004] and Petschnigg et al. [2004] propose more sophisticated techniques
to handle this flash / no-flash scenario. Figure reproduced from [Paris and Durand, 2006b].

8.3.2 Dual Bilateral Filter

Bennett et al. [2007] introduced dual bilateral filtering as a variant of bilateral filtering and
cross bilateral filtering. As the cross bilateral filter, the dual bilateral filter takes two images
I and J as input and filters I1. The difference is that both I and J are used to defined the
edges whereas the cross bilateral filter uses only J . The dual bilateral is defined by:

DBF [I]p =
1

Wp

∑
q∈S

Gσs(||p− q||) GσI
(||Ip − Iq||) GσJ

(||Jp − Jq||) Iq (21)

The advantage of this formulation is any edge visible in I or J is taken into account. Ben-
nett et al. have demonstrated the usefulness of this strategy in the context of low-light imaging
where I is a classical RGB video stream and J comes infra-red cameras. The infra-red cam-
era captures more edges but lacks the colors of a standard RGB camera. In this context, the
strength of dual bilateral filtering is that the noise properties of I and J can be accounted for
separately by setting σI and σJ independently.

From a formal standpoint, the dual bilateral filter can be interpreted as a “normal” bi-
lateral filter based on extended range data (I, J), that is, the channels of I are “glued” to
those of J to form a single image with more channels. The range weight is then a classical
one except that it involves higher-dimensional data. A minor difference with the formulation
of Bennett et al. is that the J data are filtered as well, but one can discard them if needed to
obtain the exact same result.
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Intuition on Boundaries, Shocks and Smoothing with PDEs

Jack Tumblin

Department of Computer Science, Northwestern University

When drawing or painting, many artists capture visual appearance with a coarse-to-fine
sequence of boundaries and shadings. Many begin with a sketch of large, important scene
features and then gradually add finer, more subtle details. Initial sketches of a painting
may hold sharply defined boundaries around large, smoothly shaded regions for the largest,
highest contrast and most important scene features. The artist then adds more shadings and
boundaries to build up fine details, to fill in the visually empty regions and to capture rich
detail everywhere. Such a procedure implicitly defines a hierarchical or coarse-to-fine scene
decomposition, and we can use edge preserving filter operations such as the bilateral filters
and PDEs to construct a similar decomposition for detail-preserving contrast reduction. This
detail hierarchy is based on scene boundaries and shadings, an approach markedly different
from the bandpass linear filter decompositions (e.g. image pyramids) that may suffer from
halo artifacts. A suitable method for contrast reduction will produce no such halos.

The central importance of boundaries and shadings in both vision and artistic renderings
suggests a new image decomposition method. To an artist, shadings usually refer to regions of
nearly uniform intensity gradient. Because the gradients change smoothly and gradually with
position, the region has low curvature; the second derivatives of scene intensity with respect
to image position are small. An image made entirely of low curvature regions has region
boundaries defined by gradient discontinuities, and these may include step-like and ridge-like
features(discontinuous intensity, or discontinuous gradients), but only ridge-like primitives are
necessary, as a step may be regarded as two adjacent ridge-like features.

The intensities and locations of these ridge-like boundaries alone are sufficient to construct
a novel form of simplified image by interpolating between the boundaries with a curvature-
minimizing process. The result has an interesting physical analogy; imagine image boundary
intensities as a height field made from a frame of thin wires. Dipping the wires in soapy water
forms minimal-curvature bubble membranes between the wires, and interpolates intensities in
the empty regions between the wire-frame boundaries of the simplified image. Now suppose
the wire frame is refined further by adding more wires and bending the existing wires to
more closely follow the smaller details of the original scene. With more wire and more careful
bending, the soapy wire-frame becomes an increasingly accurate representation of the original
scene, and with enough wires and bending eventually (in the limit) the entire scene can
be represented exactly. This coarse-to-fine variation in wire frame complexity, this orderly,
reversible, transformation from a very simple to an exact representation of an input image with
embedded boundaries provides a continuum of images, a ‘scale space’ of the sort extensively
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explored by Koenderink and others in the 1990’s. Such an artist-like coarse-to-fine hierarchy
can be constructed algorithmically if we can create a well-behaved method to find these
boundaries and smooth away their intervening details.

Anisotropic diffusion has shown great success as a boundary-finding intra-region smoothing
method in the image processing literature. Similar methods have been given many names such
as variable conductance diffusion, nonlinear diffusion, geometry-limited diffusion and edge-
affected diffusion. Anisotropic diffusion methods triggered a tremendous surge of new ideas
and published solutions for image segmentation, restoration and enhancement. A search of
the INSPEC publication database yielded over 300 citations of the early paper by Perona
and Malik [1990]. Though they published work on this idea as early as 1987 [Perona and
Malik, 1987], their lucid analysis in the later journal paper drew widespread attention and is
sometimes cited as the origination of anisotropic diffusion. Mathematically, it is a gradual,
time-dependent evolution of an image towards a piecewise-constant approximation but is
distinct from bilateral filters due to its ‘shock-forming’ behaviors. The change in image
intensity over time is determined by the same class of partial differential equations (PDEs)
that govern diffusion of heat or other fluids through solids.

Diffusion equations cause images to change in ways that are easy to understand using a
soggy egg-crate analogy, a thought experiment where water seeps through cardboard. Imagine
a huge mesh of interlocking cardboard strips arranged in egg-crate fashion to form a grid of
many identical four-sided cells as illustrated in Figure 1. Let each cell represent an image pixel,
and instantaneously fill each grid cell with water to a height proportional to pixel intensity.
As time passes, water slowly diffuses through the cardboard cell walls and tries to equalize
water levels in adjacent cells. Diffusion equations govern the gradual changes in these water
levels, and when applied to images these diffusion equations change pixel values in the same
way.

Water levels change in the soggy egg-crate in response to fluid flow between cells, water
movement pushed along by a motive force and permitted by the conductance or water perme-
ability of the cardboard. More formally, the water velocity or flux vector Φ at every point is
the product of the motive force vector F and the conductance scalar C. Gravity provides the
motive force in the soggy egg-crate analogy by attempting to push water “downhill,” pushing
water in the negative gradient direction −∇I to minimize water level differences. Where the
image gradient is low, adjacent egg-crate cells contain almost the same amount of water, and
motive force between these cells is low. High image gradients correspond to large differences
in adjacent water levels, causing a large motive force in the maximally downhill direction
given by the negated gradient.1

By this analogy, diffusion behavior depends on just two terms: a motive force vector
1This egg-crate analogy does contain a slightly deception. We will pretend that the motive force between

two adjacent cells depends only the cell wall area that is wetted on only one side, but in an actual ‘egg crate’
there is an additional motive force due to pressure differences: for a tall column of water in the egg crate, the
pressure may be significantly larger at the bottom of the cells than at the top, but we ignore it in our analogy.
Instead, we pretend the the motive force depends only on the wetted area, and thus it is a forward-difference
approximation of image gradient (pressure dependence would cause a motive force that is quadratically related
to image gradient.)
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Figure 1: Diffusion in a Soggy Egg Crate
Diffusion equations cause changes to pixel values that correspond to water-level changes in a
soggy egg-crate. In the egg-crate, motive forces from gravity push water through cardboard
walls, causing flows that smooth away water level variations. The smoothing rate is set by
the conductance or water permeability of the cardboard, and higher conductance permits
faster smoothing. In isotropic diffusion, conductance is constant everywhere, uniformly

smoothing away all water level differences. In anisotropic diffusion the conductance varies
inversely with gradient; high gradients sharpen rapidly and become step-like boundaries or
“shocks” but small details and low gradients between these shocks are rapidly smoothed

towards a piecewise constant result.

field F (x, y) and a conductance scalar field C(x, y). The motive force pushes the fluid (the
image intensity), and the conductance controls how easily the fluid may move within the
material in response to the motive force. Together, motive force and conductance cause flux
Φ(x, y), the moment-by-moment flow of fluid through the material. The behavior is simplest
if conductance is kept a constant everywhere (C(x, y) = C0), and is known as isotropic
(e.g. uniform) diffusion, but diffusion behavior gets much more interesting when conductance
changes as the image evolves over time, as in anisotropic diffusion and other PDEs.

Flux is then written:
Φ = −C∇I. (1)

High flows do not always lead to rapid changes in the water levels of a cell, because a rapid
inflow may be matched by an equally rapid outflow, as might happen in the middle of a
large area with constant high gradient. Instead, cell water levels change only in response to
differences in local water flow. In the limit as cell size shrinks to zero, these flow differences
are given by the divergence of the negative flow vector ∇ ·−Φ. As a result, diffusion changes
an image over time according to:

It = ∇ · (−Φ) = ∇ · (C∇I) (2)

Where:

t is time,
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x, y are spatial coordinates of the image,
C is the conductance scalar,
Φ is flux, the fluid velocity vector.
(Subscripts denote partial derivatives such that It is (∂/∂t)I(x, y, t), the time rate
of change in pixel intensity or water level, Ix is (∂/∂x)I(x, y, t), Ixx is (∂2/∂x2)I(x, y, t)
and so forth.)

Isotropic diffusion is the special case where conductance of cardboard cell walls is the
constant value C0 everywhere. Because conductance is constant it no longer affects divergence,
reducing equation 2 to It = C0(Ixx + Iyy):

It = ∇ · (C0∇I) (3)

= C0∇2I. (4)

= C0(Ixx + Iyy). (5)

The behavior of the isotropically diffused water levels over time also corresponds exactly
to repeated convolution of the image with a Gaussian filter kernel. Given unlimited time,
such smoothing removes all differences between pixels and gradually moves all water levels
and pixel intensities towards the mean image value. Accordingly, isotropic diffusion acts as
a uniform, non-directional smoothing operation with no regard for image boundaries. The
conductance constant C0 determines how fast this smoothing occurs.

In anisotropic diffusion the conductance depends on the image, and both the image and
the conductance evolve over time in more interesting ways. In their seminal 1990 paper,
Perona and Malik [1990] noted that conductance controls the rate of local image smoothing,
and proposed that conductance should vary inversely with a local “edginess” estimate to find,
preserve and sharpen image edges. This edginess value is a measure of the likelihood that
a point is near an edge or boundary. Low conductance at likely edge locations and high
conductances elsewhere preserves “edgy” features, yet rapidly smoothes away the details and
textures between them, and simple edginess estimates work well. They used gradient mag-
nitude scalar ‖∇I‖ and offered two inverse functions to find variable conductance C(x, y, t).
Thus anisotropic diffusion is:

It = ∇ · (C(x, y, t)∇I) (6)

=
∂

∂x
(CIx) +

∂

∂y
(CIy) (7)

= C(x, y, t)∇2I + (∇C(x, y, t) · ∇I) , (8)

where

C(x, y, t) = g (‖∇I‖) (9)

= g
(√

I2
x + I2

y

)
. (10)
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Figure 2: Shocks in Anisotropic Diffusion
Anisotropic diffusion rapidly forms step discontinuities or shocks in high gradient regions.

Perona and Malik [1990] offer two choices to find conductance from edginess:
Version I:

g(m) = e−(m
K

)2
(11)

Version II:

g(m) =
1

1 + (m
K )2.

(12)

where K is the “conductance threshold” for edginess estimate m. Conductance reaches its
midpoint value of 0.5 when m = K and approaches zero as m → ∞.

Anisotropic diffusion is especially interesting because both its edge-preserving and its
smoothing abilities are self-reinforcing, as illustrated in Figure 2. Small-gradient regions have
high conductance, allowing easy fluid flow that further reduces gradients. Large-gradient
regions have low conductance, discouraging flow as if forming a weak barrier. However, higher
conductances of its surroundings let fluid erode and steepen the already large gradients. Water
seeps inwards towards the uphill side of the barrier, and fluid quickly drains away from the
downhill side, making the large gradient region narrower and steeper, strengthening its barrier
effect. The region quickly evolves into a step-wise discontinuity with infinite gradient and zero
conductance known as a “shock.” As a result, anisotropic diffusion transforms an image into a
piecewise constant approximation with step-like discontinuities in regions of high “edginess.”

More importantly, the self-reinforcing behaviors of anisotropic diffusion improve its perfor-
mance as a boundary finder. Gradient magnitudes much larger than the gradient threshold K

in Equations 11 and 12 will consistently form shocks, but the boundary/not-boundary decision
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is not a simple threshold testing process. Image behavior at points where gradient magni-
tude is near K is strongly influenced by image surroundings; gradients less than K may still
form shocks if another shock is forming nearby, and small, isolated fine details with gradients
greater than K are still smoothed away. Thus anisotropic diffusion finds boundaries accord-
ing to both their gradients and their surroundings, sharpens the boundaries to create shocks
and smoothes away all textures and details between them. In this way anisotropic diffusion
describes a more robust, better-behaved boundary-finding method than simple thresholding
of gradients, buecause boundaries are defined by image gradients and the shapes of their sur-
rounding neighborhoods, suppressing spurious ‘edges’ from noise that accidentally produces
large gradients that don’t connect together to form a consistent boundary. Anisotropic dif-
fusion offers a nonlinear detail removal method that identifies and sharpens boundaries while
smoothing away all details and textures between them.

Though numerically stable and guaranteed to converge to a piecewise-constant solution as
t → ∞, Nitzberg and Shiota [1992], You et al. [1995] and others have shown that anisotropic
diffusion is marginally ill-posed; even an infinitesimal changes in input can cause very large
changes in output due to the shock-forming process. Shocks usually form at local gradient
maxima and follow image boundaries closely, but this is not always true. Regions of high,
approximately uniform gradient may develop shocks anywhere within the region. Instead
of a single large, centrally placed shock, anisotropic diffusion may develop multiple shocks
placed seemingly at random, causing “stairsteps” in the region as shown in Figure 2 and
explored by Whitaker and Pizer [1993]. Several authors have proposed methods to remove
stairstepping, including [Whitaker and Pizer, 1993; Luo et al., 1994; Acton, 1998], but most
force tradeoffs between resistance to multiple steps and ability to capture small crenelations
in scene boundaries.

Despite the attractive edge-preserving and intra-region smoothing properties of anisotropic
diffusion, its piecewise constant output is a poor choice as the coarse image output of a
simplifier function for tone-mapped images. Many high contrast images contain large smooth
high gradient regions that should be regarded as a single coarse image feature, such as a large
region of a bare wall lit only by a small lamp. The corresponding fine image in this region
should contain only the wall texture. Though anisotropic diffusion will quickly smooth away
the wall texture in a few iterations, no arrangement of shocks can reasonably approximate
the coarse features of this region. Stairstepping from anisotropic diffusion (or other PDEs
that form shocks from sustained high gradients) can exacerbate the problem, causing multiple
coarse image contours that do not correspond to any significant input image features.
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Abstract

We present an image-based modeling and editing system that takes
a single photo as input. We represent a scene as a layered collection
of depth images, where each pixel encodes both color and depth.
Starting from an input image, we employ a suite of user-assisted
techniques, based on a painting metaphor, to assign depths and ex-
tract layers. We introduce two specific editing operations. The first,
a “clone brushing tool,” permits the distortion-free copying of parts
of a picture, by using a parameterization optimization technique.
The second, a “texture-illuminance decoupling filter,” discounts the
effect of illumination on uniformly textured areas, by decoupling
large- and small-scale features via bilateral filtering. Our system
enables editing from different viewpoints, extracting and grouping
of image-based objects, and modifying the shape, color, and illumi-
nation of these objects.

1 Introduction

Despite recent advances in photogrammetry and 3D scanning tech-
nology, creating photorealistic 3D models remains a tedious and
time consuming task. Many real-world objects, such as trees or
people, have complex shapes that cannot easily be described by
the polygonal representations commonly used in computer graph-
ics. Image-based representations, which use photographs as a start-
ing point, are becoming increasingly popular because they allow
users to explore objects and scenes captured from the real world.
While considerable attention has been devoted to using photographs
to build 3D models, or to rendering new views from photographs,
little work has been done to address the problem of manipulating
or modifying these representations. This paper describes an inter-
active modeling and editing system that uses an image-based repre-
sentation for the entire 3D authoring process. It takes a single pho-
tograph as input, provides tools to extract layers and assign depths,
and facilitates various editing operations, such as painting, copy-
pasting, and relighting.

Our work was inspired, in part, by the simplicity and versatility
of popular photo-editing packages, such as Adobe Photoshop. Such
tools afford a powerful means of altering the appearance of an im-
age via simple and intuitive editing operations. A photo-montage,
where the color of objects has been changed, people have been
removed, added or duplicated, still remains convincing and fully

∗http://graphics.lcs.mit.edu/

“photorealistic.” The process involves almost no automation and is
entirely driven by the user. However, because of this absence of
automation, the user has direct access to the image data, both con-
ceptually and practically. A series of specialized interactive tools
complement one another. Unfortunately, the lack of 3D informa-
tion sometimes imposes restrictions or makes editing more tedious.
In this work, we overcome some of these limitations and introduce
two new tools that take advantage of the 3D information: a new
“distortion-free clone brush” and a “texture-illuminance decoupling
filter.”

Clone brushing (a.k.a. rubberstamping) is one of the most pow-
erful tools for the seamless alteration of pictures. It interactively
copies a region of the image using a brush interface. It is often used
to remove undesirable portions of an image, such as blemishes or
distracting objects in the background. The user chooses a source
region of the image and then paints over the destination region us-
ing a brush that copies from the source to the destination region.
However, clone brushing has its limitations when object shape or
perspective causes texture foreshortening: Only parts of the image
with similar orientation and distance can be clone brushed. Arti-
facts also appear when the intensity of the target and source regions
do not match.

The existing illumination also limits image editing. Lighting de-
sign can be done by painting the effects of new light sources using
semi-transparent layers. However, discounting the existing illumi-
nation is often difficult. Painting “negative” light usually results
in artifacts, especially at shadow boundaries. This affects copy-
pasting between images with different illumination conditions, re-
lighting applications and, as mentioned above, clone brushing.

In this paper, we extend photo editing to 3D. We describe a sys-
tem for interactively editing an image-based scene represented as
a layered collection of depth images, where a pixel encodes both
color and depth. Our system provides the means to change scene
structure, appearance, and illumination via a simple collection of
editing operations, which overcome a number of limitations of 2D
photo editing.

Many processes involving the editing of real images, for aes-
thetic, design or illustration purposes, can benefit from a system
such as ours: designing a new building in an existing context,
changing the layout and lighting of a room, designing a virtual
TV set from a real location, or producing special effects. Some of
these applications already obtain impressive results with 2D image-
editing tools by segmenting the image into layers to permit sepa-
rate editing of different entities. A particular case is cell animation,
which can take immediate and great advantage of our system.

We will see that once this segmentation is performed, an image-
based representation can be efficiently built, relying on the ability
of the user to infer the spatial organization of the scene depicted in
the image. By incorporating depth, powerful additional editing is
possible, as well as changing the camera viewpoint (Fig. 1).

One of the major advantages of image-based representations is
their ability to represent arbitrary geometry. Our system can be used
without any editing, simply to perform 3D navigation inside a 2D
image, in the spirit of the Tour into the Picture system [HAA97],
but with no restriction on the scene geometry.

Permission to make digital or hard copies of all or part of this work for
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are not made or distributed for profit or commercial advantage and that
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(a) (b) (c) (d)

Figure 1: St Paul’s Cathedral in Melbourne. (a) Image segmented into layers (boundaries in red). (b) Hidden parts manually clone brushed
by the user. (c) False-color rendering of the depth of each pixel. (d) New viewpoint and relighting of the roof and towers.

1.1 Previous work

We make a distinction between two classes of image-based tech-
niques. The first is based on sampling. View warping is a typical
example that uses depth or disparity per pixel [CW93, LF94, MB95,
SGHS98]. Higher dimensional approaches exist [LH96, GGSC96],
but they are still too costly to be practical here. The representation
is purely independent of the geometry, but for real images, depth
or disparity must be recovered, typically using stereo matching.
Closer to our approach, Kang proposes to leave the depth assign-
ment task to the user via a painting metaphor [Kan98], and Williams
uses level sets from silhouettes and image grey levels [Wil98].

The second class concerns image-based modeling systems that
take images as input to build a more traditional geometric represen-
tation [Pho, Can, DTM96, FLR+95, LCZ99, POF98, Rea]. Using
photogrammetry techniques and recovering textures from the pho-
tographs, these systems can construct photorealistic models that can
be readily used with widely-available 3D packages. However, the
use of traditional geometric primitives limits the geometry of the
scene, and the optimization techniques often cause instabilities.

Our goal is to bring these two classes of approaches together. We
wish to build a flexible image-based representation from a single
photograph, which places no constraints on the geometry and is
suitable for editing.

The work closest to ours is the plenoptic editing approach of
Seitz et al. [SK98]. Their goal is also to build and edit an image-
based representation. However, their approach differs from ours in
that their system operates on multiple views of the same part of the
scene and propagates modifications among different images, allow-
ing a better handling of view-dependent effects. Unfortunately, the
quality of their results is limited by the volumetric representation
that they use. Moreover, they need multiple images of the same
object viewed from the outside in.

We will see that some of our depth acquisition tools and results
can be seen as a generalization of the Tour Into the Picture ap-
proach, where central perspective and user-defined billboards are
used to 3D-navigate inside a 2D image [HAA97]. Our work, how-
ever, imposes no restrictions on the scene geometry, provides a
broader range of depth acquisition tools, and supports a variety of
editing operations.

Our work is also related to 3D painting, which is an adaptation
of popular 2D image-editing systems to the painting of textures and
other attributes directly on 3D models [HH90, Met]. This approach
is, however, tightly constrained by the input geometry and the tex-
ture parameterization.

1.2 Overview

This paper makes the following contributions:

• An image-based system that is based on a depth image repre-
sentation organized into layers. This representation is simple,
easy to render, and permits direct control. It is related to lay-
ered depth images (LDIs) [SGHS98], but offers a more mean-
ingful organization of the scene. We demonstrate our system
on high-resolution images (megapixels, as output by current
high-end digital cameras).

• A new set of tools for the assignment of depth to a single pho-
tograph based on a 2D painting metaphor. These tools provide
an intuitive interface to assign relevant depth and permit direct
control of the modeling.

• A non-distorted clone brushing operator that permits the du-
plication of portions of the image using a brush tool, but with-
out the distortions due to foreshortening in the classical 2D
version. This tool is crucial for filling in gaps, due to oc-
clusions in the input image, that appear when the viewpoint
changes.

• A filter to decouple texture and illuminance components in
images of uniformly textured objects. It factors the image
into two channels, one containing the large-scale features (as-
sumed to be from illumination) and one containing only the
small-scale features. This filter works even in the presence of
sharp illumination variations, but cannot discount shadows of
small objects. Since it results in uniform textures, it is crucial
for clone brushing or for relighting applications.

• Our system permits editing from different viewpoints, e.g.
painting, copy-pasting, moving objects in 3D, and adding new
light sources.

2 System overview

2.1 Layers of images with depth

All elements of our system operate on the same simple data struc-
ture: images with depth [CW93]. This permits the use of stan-
dard image-based rendering techniques [CW93, MB95, SGHS98,
MMB97]. Depth is defined up to a global scale factor.

The representation is organized into layers (Fig. 1(a) and 2), in
the spirit of traditional image-editing software and as proposed in
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layer {
reference camera : transformation matrix
color channels : array of floats
alpha channel : array of floats
depth channel : array of floats
optional channels : arrays of floats

}

Figure 2: Basic layer data structures.

computer vision by Wang and Adelson [WA94]. An alpha channel
is used to handle transparency and object masks. This permits the
treatment of semi-transparent objects and fuzzy contours, such as
trees or hair. Due to the similarity of data structures, our system
offers an import/export interface with the Adobe Photoshop format
that can be read by most 2D image-editing programs.

The image is manually segmented into different layers, using se-
lection, alpha masks, and traditional image-editing tools (Fig. 1(a)).
This is typically the most time-consuming task. The parts of the
scene hidden in the input image need to be manually painted using
clone brushing. This can more easily be done after depth has been
assigned, using our depth-corrected version of clone brushing.

A layer has a reference camera that describes its world-to-image
projection matrix. Initially, all layers have the same reference cam-
era, which is arbitrarily set to the default OpenGL matrix (i.e. iden-
tity). We assume that the camera is a perfect pinhole camera, and
unless other information is available, that the optical center is the
center of the image. Then, only the field of view needs to be spec-
ified. It can be entered by the user, or a default value can be used
if accuracy is not critical. Standard vision techniques can also be
used if parallelism and orthogonality are present in the image (see
Section 3). Note that changing the reference camera is equivalent to
moving the objects depicted in the layer in 3D space. Throughout
the paper we will deal with two kinds of images: reference images
that correspond to the main data structure, and interactive images
that are displayed from different viewpoints to ease user interaction.
The degree to which the viewpoint can be altered, without artifacts,
is dependent on the particular scene, assigned depth, and occluded
regions.

Our organization into layers of depth images is related to the
LDIs [SGHS98], with a major difference: In an LDI, the layering is
done at the pixel level, while in our case it is done at a higher level
(objects or object parts). LDIs may be better suited for rendering,
but our representation is more amenable to editing, where it nicely
organizes the scene into different higher-level entities.

Additional channels, such as texture, illuminance, and normal
(normals are computed for each pixel using the depth of the 4 neigh-
boring pixels), may be used for specific applications (relighting in
particular).

2.2 System architecture

The architecture of our system is simple, since it consists of a set of
tools organized around a common data structure (Fig. 3). It is thus
easy to add new functionality. Although we present the features
of our system sequentially, all processes are naturally interleaved.
Editing can start even before depth is acquired, and the representa-
tion can be refined while the editing proceeds.

Selection, like channels, is represented as an array corresponding
to the reference image. Each pixel of each layer has a selection
value, which can be any value between 0 and 1 to permit feathering.
Selection is used not only for copy-pasting, but also for restricting
the action of the tools to relevant areas.

The interactive display is performed using triangles [McM97,
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Figure 3: Architecture of our system.

MMB97] and hardware projective texture mapping [SKvW+92].
The segmentation of the scene into layers greatly eliminates
rubber-sheet triangle problems. Obviously, any other image-
based-rendering technique such as splatting could be used [CW93,
SGHS98, MB95].

The tools, such as depth assignment, selection or painting, can
be used from any interactive viewpoint. The z-buffer of the inter-
active view is read, and standard view-warping [CW93, McM97]
transforms screen coordinates into 3D points or into pixel indices
in the reference image. The texture parameter buffers of Hanrahan
and Haeberli could also be used [HH90].

3 Depth Assignment

We have developed depth assignment tools to take advantage of
the versatility of our representation. The underlying metaphor is to
paint and draw depth like colors are painted, in the spirit of Kang
[Kan98]. This provides complete user control, but it also relies on
the user’s ability to comprehend the layout of the scene. The level
of detail and accuracy of depth, which can be refined at any time,
depend on the target application and intended viewpoint variation.

However, even if a user can easily infer the spatial organization
and shapes depicted in the image, it is not always easy to directly
paint the corresponding depth. Hence we have also developed hy-
brid tools that use pre-defined shapes to aid in painting accurate
depth. In the development of our interface, we have emphasized
2D, rather than 3D interaction, the direct use of cues present in the
image, and the use of previously-assigned depth as a reference.

Depth can be edited from any interactive viewpoint, which is
important in evaluating the effects of current manipulations. Mul-
tiple views can also be used [Kan98]. We will see that some tools
are easier to use in the reference view, where image cues are more
clearly visible, while for others, interactive views permit a better
judgment of the shape being modeled.

The use of selection also permits us to restrict the effect of a tool
to a specific part of the image, providing flexibility and finer con-
trol. And since our selections are real-valued, the effect of depth
tools can be attenuated at the selection boundary to obtain smoother
shapes. In our implementation, we use the selection value to inter-
polate linearly between the unedited and edited values. Smoother
functions, such as a cosine, could also be used.

In contrast to optimization-based photogrammetry systems [Can,
DTM96, FLR+95], the field of view of the reference camera must
be specified as a first step (as aforementioned, we assume a perfect
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pinhole camera). If enough information is available in the image,
the field of view can be calculated (Section 3.2). The user can also
set the focal length manually. Otherwise, the focal length is set to a
default value (50mm in practice).

3.1 Depth painting

The user can directly paint depth using a brush, either setting the
absolute depth value or adding or subtracting to the current value
(chiseling). Absolute depth can be specified using a tool similar
to the color picker, by clicking on a point of the image to read
its depth. The relative brush tool is particularly useful for refin-
ing already-assigned depth (Fig. 5(b)). The size and softness of the
brush can be interactively varied.

The whole selected region can also be interactively translated.
Translation is performed along lines of sight with respect to the
reference camera: The depth of each selected pixel is incremented
or decremented (Fig. 4). However, it is desirable that planar objects
remain planar under this transformation. We do not add or subtract
a constant value, but instead multiply depth by a constant value.
Depth-translating planar objects therefore results in parallel planar
objects.

�����������
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Figure 4: Depth translation is performed along lines of sight with
respect to the reference camera.

In the spirit of classical interactive image-editing tools, we have
developed local blurring and sharpening tools that filter the depth
channel under the pointer (Fig. 5(c)). Blurring smooths the shape,
while sharpening accentuates relief. Local blurring can be used to
“zip” along depth discontinuities, as described by Kang [Kan98]. A
global filtering is also possible, in particular blurring to smooth the
3D shape, noise to add complexity, and median filtering to remove
outliers.

(a) (b) (c)
Figure 5: (a) Face. (b) Chiseled depth. (c) Blurred depth.

Similar to Kang’s [Kan98] and William’s [Wil98] methods, the
user can use the rgb channels to assign depth. This is motivated by
cases where darker values correspond to more distant pixels (such
as trees) or by atmospheric perspective making distant objects bluer.
The user specifies the zmin and zmax depth values, and the vector
specifying color direction �C (e.g. dark to light or amount of blue),
and the effect can be applied absolutely or relatively. In the absolute
case, for example, depth is then specified from the color at each
pixel�c(x,y) from:

z(x,y) = zmin +(zmax − zmin)∗�C ·�c(x,y).

3.2 Ground plane and reference depth

The tools presented so far work best if some initial depth has been
assigned, or if a reference is provided for depth assignment. Similar
to the perspective technique used since the Renaissance, and to the
spidery mesh by Horry et al. [HAA97], we have found that the use
of a reference ground plane greatly simplifies depth acquisition and
improves accuracy dramatically, since it provides an intuitive ref-
erence. The position with respect to the ground plane has actually
been shown to be a very effective depth cue [Pal99]. Specifying a
ground plane is typically the first step of depth assignment.

The ground plane tool can be seen as the application of a gradient
on the depth channel (Fig. 6). However, an arbitrary gradient may
not correspond to a planar surface. In our system, the user speci-
fies the horizon line in the reference image, which constrains two
degrees of freedom, corresponding to a set of parallel planes. The
remaining degree of freedom corresponds to the arbitrary scale fac-
tor on depth. We can thus arbitrarily set the height of the observer
to 1, or the user can enter a value.

(a) (b)
Figure 6: (a) Ground plane. (b) Depth map.

We have also implemented the method by Liebowitz et al.
[LCZ99] that allows the acquisition of architectural models and
camera parameters from one image using parallelism and orthog-
onality constraints. This provides both the camera parameters and
an accurate reference ground plane. This also allows us to compute
the position of the optical axis if it is not in the center of the image.

Depth picking and depth painting can then easily be used to
depth-paint billboards parallel to the image plane. Since most ob-
jects in a scene touch the ground, or their projection on the ground
can be inferred by the user, this proves to be very efficient. This
is similar to the placement of billboards on the “spidery mesh” of
Horry et al. [HAA97]. However, their system is limited to central
perspective and polygonal orthogonal objects, while we can refine
our representation and obtain arbitrary shapes.

Figure 7: Vertical tool. The user draws the contact of the vertical
geometry with the ground plane.
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We have extended the notion of billboards to allow the user to
paint the depth of arbitrary vertical objects. This works best when
the interactive camera is set to the reference camera: The contact or
projection of the object on the ground plane is drawn, and a vertical
depth is extruded (Fig. 7). In practice, the contact drawn by the user
is represented as a polyline, the corresponding vertical polygons
are rendered using OpenGL, and the z-buffer is read to update the
selected pixels.

We are not limited to the use of a planar ground reference. The
3D locations of the points of the contact polyline drawn by the user
are read from the interactive z-buffer. This means that if the ground
has been chiseled or translated for better terrain modeling, vertical
objects will be extruded accordingly.

We have also implemented an automatic version that processes
the whole selection or layer at once. It assumes that the layer or
selection is in contact with the ground reference at its lowest pixels.
Each column of pixels in the reference image is assigned the depth
corresponding to its lowest visible or selected pixel.

3.3 Geometric primitives

Some geometric shapes, such as boxes, spheres, or cylinders, are
hard to depth-paint accurately. We therefore utilize geometric prim-
itives that can be drawn transparently as 2D objects. For example,
the user draws a circle or clicks on three points to assign spherical
depth. We use similar interfaces for cylinders (the user draws the
edges), boxes (the user draws three edges of a corner), and pyra-
mids (the user draws the base and apex). These tools work best
when used from the reference camera.

The primitive is rendered from the reference camera using
OpenGL, and the z-buffer is read to assign depth. This requires
the use of a depth buffer at the resolution of the reference image.
Since our system treats images that can be larger than the screen,
we use tiling.

Once the image projection of the primitive has been provided, its
distance must be specified. The user can use an arbitrary distance
and then refine it with the translation tool. He can also use the
already-assigned depth as a reference by clicking on one point. By
default, the first point clicked by the user is used as a reference
depth (e.g. corner of a box).

To improve the quality of depth when a ground plane has been
assigned, the user can use primitive snapping to enforce the verti-
cality of boxes, cylinders or pyramids, or to constrain them along
the normal of a given pixel. A least-square error minimization is
then run to optimize the 3D shape position.

3.4 Organic shapes

In the spirit of Williams [Wil98] and related to the Teddy fast-
modeling system [IMT99], we propose a tool that assigns depth
using level sets. It is well suited to giving organic shapes a bulgy
appearance, by specifying more distant depth at the boundary and
closer depth in the center (Fig. 8(a) and (b)). This tool is relative,
and the range r of depth addition is specified by the user.

We compute the level sets using an erosion technique (e.g.
[SD95]). The initial active interior of the object is defined as the
set of pixels of the layer or selection with non-null alpha. The dis-
tance to the boundary dbound is initialized to 0, and we iteratively
“erode.” For each iteration, we discard pixels that have a non-active
neighbor, and increment the distance of active pixels by 1.

We use the normalized distance to the centroid d′ = 1− dbound
dboundmax

and update depth according to z = z+ r
√

1−d′2. This formula was
chosen because it assigns a spherical shape to a disk under ortho-
graphic projection.

3.5 Faces

The specific case of human faces is important. The output of the
impressive morphable model of Blanz et al. [BV99] could be used
to retrieve accurate depth. However, this technique is not easy to
implement since it requires a large database of 3D face scans, and
unfortunately, it takes tens of minutes to acquire the geometry of a
face from a photograph.

We have developed a simpler method that trades accuracy and
user intervention for speed and simplicity. This method could be
further generalized to a broader class of template shapes. We use a
generic arbitrary 3D face model, optimize its 3D position to match
the photograph, and then use 2D morphing to refine the match
(Fig. 8).

The user specifies correspondence points between the image and
the 3D model. These points are used to find the rotation, scale, and
position of the 3D model using Levenberg-Marquardt optimization
[PSVF92]. Rotation and scale are optimized independently to avoid
shear in the resulting transformation. The 3D face is rendered,
and the z-buffer is read back. We then use the same correspon-
dence points to morph the z-buffer and obtain a better match with
the image using triangle-based morphing and linear interpolation
[GDCV98].

4 Non-distorted clone brushing

Standard clone brushing has its limitations when perspective causes
texture foreshortening (Fig. 9(a)). In practice, only parts with sim-
ilar orientation and distance to the camera can be clone brushed.
Moreover, only regions of similar intensity can be copied. The for-
mer problems will be treated in this section, while the latter will be
addressed in the next section.

Since our system has information about depth, we can correct
distortion due to both perspective and surface shape. In the general
case of arbitrary geometry, the problem is similar to low-distortion
texture mapping: We want to map the source region of the image-
based representation to the destination, with as little distortion as
possible. Our idea is to compute a (u,v) texture parameterization
for both the source and destination regions, and use this mapping
for the clone brush.

4.1 Non-distorted parameterization

Our parameterization optimization is based on the work by Levy et
al. [LM98, Mal89], with three important differences: Our approach
is local around the clone-brushed regions, has no boundary condi-
tion, and needs to run in real-time. We first quickly review the key
points of their method in order to describe the specifics of our flood-
fill adaptation. This overview is presented in our specific context,
where each pixel is seen as a vertex connected to its 4-neighbors.
We refer the reader to their article for details [LM98, Mal89].

Levy et al. propose to minimize two classes of distortions: angu-
lar (preserve orthogonal angles) and iso-parametric distance (make
isolines equidistant). The former requires that the gradient of u and
v be orthogonal, and the latter requires constant magnitude for their
gradients. Different weights can be assigned to emphasize one con-
straint over another.

They use discrete smooth interpolation [Mal89], where each dis-
crete value (u or v at a pixel in our case) is smoothed using a linear
combination of its neighbors. The combinations minimize a rough-
ness function to obtain a valid mapping, and quadratic constraints
to minimize distortion. Smoothing steps on u and v are interleaved
and iterated.

In our case, the roughness R for a pixel p depends on its 4-
neighbors N(p):
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(a) (b) (c) (d) (e)

Figure 8: Organic and face tools. (a) Initial statue image. (b) False-color depth map after level set tool. (c) User-specified correspondence
points. (d) Transformation after optimization. (e) Face from new viewpoint after depth is applied.

R(u,v) =

∑
p

(
−4up + ∑

p′∈N(p)
up′

)2

+

(
−4vp + ∑

p′∈N(p)
vp′

)2

. (1)

The minimum of R is reached when its partial derivatives ∂R
∂u and

∂R
∂v are null for each pixel p. This yields an expression of u and v at
a pixel as a linear combination of the values of the neighbors of its
neighbors:

up = ∑
p′∈N(N(p))

au
p,p′up′

vp = ∑
p′∈N(N(p))

av
p,p′vp′ ,

(2)

where the ai
j are given coefficients.

Distortions are minimized by introducing a set of linear con-
straints C depending on the gradients of u and v. Levy et al. use a
least-square approach, which defines a generalized roughness R�:

R�(u,v) = R(u,v)+

∑
c∈C

{(
∑
p

Ac,u
p up

)
−bu

c

}2

+

{(
∑
p

Ac,v
p vp

)
−bu

c

}2

, (3)

where the Ai
j and bi

j are given coefficients when one parameter, u or
v, is assumed constant. The smoothing on u and v are interleaved,
which means that the values of Ai

c,u depend on v, and vice-versa.
This generalized roughness R� reaches its minimum when its

partial derivatives, ∂R�

∂u and ∂R�

∂v , are null for each pixel p. This
can be expressed as a set of linear equations:

up = ∑
p′∈N(N(p))

au
p,p′up′ +αu

p,p′up′

vp = ∑
p′∈N(N(p))

av
p,p′vp′ +αv

p,p′ vp′ ,
(4)

where αu
j are coefficients that depend on v, and αv

j depend on u.
This method is, however, too slow to optimize over an entire

layer in our interactive context. Moreover, it requires boundary
conditions. We therefore adapt it using two strategies: a flood-fill
approach and a simple but effective initialization.

4.2 Flood-fill parameterization

We adapt the discrete smooth interpolation method in a “flood-fill”
manner to optimize the parameterization around the current posi-
tion of the clone brush. We compute the parameterization for only
a subset of pixels, called active pixels. This subset is expanded
as time progresses and the user drags the brush. We describe the
method for a single layer, however, it runs concurrently for both
the source and destination layers. We interleave optimization steps,
where coordinates are refined, and expansion steps, where new pix-
els are declared active and initialized. We moreover freeze the co-
ordinates of already-brushed pixels.

To initialize the process, we use the first point clicked by the user
as a seed, assign it the coordinates (0,0), and set the gradient of u,
�∇u orthogonal to the vertical direction and to the pixel normal. �∇v
is then orthogonal to �∇u.

The set of pixels at the boundary of the active region is called the
active front. More formally, a pixel is declared in the active front if
it is active and if one of its 4-neighbors has an inactive 4-neighbor
(Fig. 9(c)). Intuitively, the active front corresponds to pixels that
lack neighbors necessary to compute smoothing in Eqs. (2) and (4).
Active pixels not in the active front are said to be fully active.

Optimization

The optimization steps follow the lines of the original discrete
smooth interpolation. Optimizations on u and v are interleaved,
and active pixels are treated as vertices of a mesh and smoothed
accordingly using linear operations.

The active front requires special care. Due to the absence of
some neighbors, Eq. (4) cannot be directly used. If these neigh-
bors are simply discarded from the formula, the parameterization
will “shrink,” because the roughness term R from Eq. (1) is no
longer balanced. We thus only optimize the gradient constraints
for these pixels and omit the mapping of the roughness term (the ai

j
in Eq. (4)). A good initial value for the active-front pixels is then
the key to the stability of the process.

Expansion and initialization

An expansion step extends the active region by one pixel in the
direction of the current mouse location. The active front is accord-
ingly updated, and each new active pixel receives initial coordinate
values. This is done according to its active neighbors, by using a
local planar approximation of the geometry. For each neighbor, the
coordinates (u′,v′) of the new pixel are computed using the current
gradients of an active neighbor, �∇u and �∇v, and the object-space
vector �d between the two pixels (Fig. 9(c)):

(u′,v′) = (u+ �d ·�∇u,v+ �d ·�∇v).
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(a) (b) (c)

Figure 9: (a) Classical clone brushing. The user first clicks on i0 to specify the source region and then paint brushes starting at b0, which
assigns the translation. b is then a simple copy of i. (b) Perspective-corrected clone brushing. The column geometry has been changed to
a cylinder, and the carpet has been removed and clone brushed onto the ceiling. (c) Flood-fill parameterization. Fully active pixels are in
red. The active front is in yellow. The green pixel is set active, and its initial (u′,v′) parameters are computed using the gradient of its active
neighbors.

The average of the values computed from the active neighbors is
used. This formula results in an optimal initial value, provided the
geometry is planar.

Freezing and clone brushing

The parameterization proceeds as the user interactively clone
brushes. It must be faster than the speed of the brush to ensure
smooth interaction. In practice, we have found that subsampling
the layer was necessary in order to obtain real-time feedback. We
compute (u,v) values every 4×4 pixels and interpolate bilinearly.
This process does not take into account the local bumps in the ge-
ometry, but fits the global shape.

As soon as a pixel has been clone brushed, its (u,v) coordinates
must be frozen to avoid artifacts that would occur if the same pixel
were re-used with different coordinate values due to subsequent op-
timization iterations.

Clone brushing a destination pixel with coordinate (u,v) involves
inverting the mapping of the source image. Note that in the general
case, no pixel will have the exact (u,v,) coordinates. We thus use
the four pixels with the nearest coordinates and perform bilinear in-
terpolation. To find these pixels, we use a marching method. Since
a brush corresponds to a set of contiguous pixels, we only need to
compute a seed value and march from it along the gradient to find
the inverse mapping of subsequent pixels.

Our optimization is clearly not as accurate as the method of Levy
and Mallet [LM98, Mal89]. However, it provides an exact solu-
tion in the case of planar geometry and has worked well in practice
for curved geometry. This is because our case is simpler than the
general mesh-parameterization problem. Our data is a height field
transformed by a perspective matrix, which greatly decreases po-
tential distortions. Moreover, our layers are segmented by the user
into different spatial objects that prevent strong discontinuities.

5 Texture-illuminance decoupling filter

We now present a filter that factors the image into a texture compo-
nent and an illumination component. This is useful both for relight-
ing and clone brushing, since the decoupled texture channel has a
uniform level of illumination.

Most previous relighting work relies on a light transport simu-
lation to remove the effect of existing lighting [FGR93, DRB97,
Deb98, YDMH99, LFD+99, LDR00]. Loscos et al. use texture
synthesis to remove artifacts along shadow boundaries, but still re-
quire an initial physical simulation [LDR00]. In contrast, our ap-
proach is not physically based. It is an image-processing filter that
removes lighting effects from uniformly textured objects.

A related approach was introduced by Nayar and Bolle [NB93].
Our approach differs from theirs in that they deal with non-textured
regions and focus on the segmentation and computation of re-
flectance ratios, while we deal with texture extraction.

5.1 Large- and small-scale feature separation

We make the following simple assumption: Large-scale luminance
variations are due to the lighting, while small-scale details are due
to the texture. In practice, this means that large stains will be treated
as illuminance variations (which is actually desirable in most prac-
tical cases), while shadows of small objects will not be handled
correctly. Small detailed shadows are the main limitation of our
technique.

We have developed a non-linear filter that factors an image into
a texture channel and an illuminance channel respecting the above
assumption. We do not claim that these are the true texture and illu-
minance, but we will use these terms for simplicity. This problem is
related to image denoising, but the “noise” in this case is the texture
information that we want to retrieve.

To begin, the user specifies a feature size of the texture by drag-
ging a line segment over a pattern. The basic idea is to blur the
image with a low-pass Gaussian filter G , specified by the feature
size (in practice we use σspatial = f eature size). If I0 is the input
image, and p and p′ are pixel locations, we have:

I1(p) =
Σp′G(p, p′,σspatial)I0(p′)

Σp′G(p, p′,σspatial)
. (5)

Only large-scale illuminance variations remain. We moreover as-
sume that the average color comes from the texture component, so
we divide the illuminance obtained by the normalized average color
value. We then divide the initial image by this blurred version to
compute a uniform texture component (Fig. 10(b) and (c)).

439



(a) (b) (c) (d)
Figure 10: Texture-illuminance decoupling. (a) Input image. (b) Initial illuminance estimation using simple Gaussian filtering. (c) Initial
texture estimation, note the artifacts corresponding to shadow boundaries. (d) Texture computed using bilateral filtering.

This approach works well for slowly varying illumination,
but fails at shadow boundaries, where haloing effects occur (see
Fig. 10(c) and 11). This simply means that shadow boundaries in-
troduce frequencies that are in the range of the feature size, and that
they are treated as texture frequencies by the Gaussian blur. In ad-
dition, texture foreshortening needs to be treated to make consistent
use of the feature size.
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Figure 11: Texture-illuminance decoupling in 1D. The example ex-
hibits sharp illumination variations, which cannot be captured using
simple Gaussian filtering. This first pass is, however, used for the
bilateral filtering pass, to average only pixels with similar illumina-
tion, due to the use of an additional range Gaussian.

5.2 Depth correction

Due to foreshortening and surface orientation, the feature size is
not constant in image space. We therefore use the depth channel
to compensate for foreshortening, and normals for orientation. The
user specifies feature size at a reference pixel pre f . For other pixels,
the spatial kernel is scaled by zre f

z . To compensate for orientation,
we use a local planar approximation of the surface: Gaussian el-
lipses oriented along the scene surfaces (Fig. 12(a)).

Let �N be the unit normal and �E the unit viewing direction. The
small axis of the ellipse is along �n, the unit image projection of
�N. We note �a the long axis of the ellipse, which is a unit vector
orthogonal to�n. The small/large ratio σ2

σ1
is given by the dot product

�N ·�E, where σ1 = zre f
z(p) σspatial as described above. We then have:

Kspatial(p′, p,σspatial) = G( �pp′ ·�n,σ2)G( �pp′ ·�a,σ1). (6)
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Figure 12: (a) Orientation correction of the spatial Gaussian. (b)
The kernel filter for pixel P is the product of the spatial and range
Gaussians: The weight of point p′′ is lower than the weight of p′
although it is closer, because the estimated illuminance of p′ is more
similar to that of p.

5.3 Bilateral filtering

To handle discontinuities, we use a non-linear edge-preserving fil-
ter. Anisotropic diffusion could be an option [PM90], but since we
have information about the feature size, we prefer the use of bilat-
eral filtering [TM98], which is more controllable. The principle is
to use an additional Gaussian in the range domain to average only
pixels of similar intensity. The total kernel is the product of the
spatial Gaussian (Eq. (5)) and this range Gaussian (Fig. 12(b)).

We adapt this method to our particular case. It is iterative, and
the current estimate of the illuminance is used to drive the range
Gaussian:

Ii+1(P) =
Σp′K(p′,p)I0(p′)

Σp′K(p′,p)

K(p′, p) = Kspatial(p′, p,σspatial)Grange(Ii(p), Ii(p′),σrange).

The main difference between this approach and standard bilat-
eral filtering is that we always filter the initial image I0. Unlike
denoising approaches, we are interested in factoring the initial im-
age, not in removing noise. Because the kernel averages only pixels
of similar estimated illuminance, the filter captures shadow bound-
aries (Fig. 10(d) and 11). The process converges quickly, and we
use I3 as our final illuminance estimate. The only hard-coded pa-
rameter is the variance of the range Gaussian. In practice, we have
found that σrange = 0.01max(I1) gives good results.

This filter is very effective on high-dynamic range images
[DM97]. For 24-bit images, it works best if the illumination does
not vary too dramatically. Otherwise, very dark or very bright re-
gions can lead to artifacts, because the texture information has been
destroyed by color quantization. In this case, texture synthesis is
the only solution to resynthesize the lost information.

440



6 Implementation and Results

Our system has been implemented on SGI workstations using the
QT GUI library and the graphics API OpenGL. The accompanying
video demonstrates a variety of results obtained with the system. In
this section, we first describe in detail how the church example was
acquired and then describe other examples and editing operations.

6.1 Church example

For the church example (Fig. 1), we used a single 24-bit 1000x1280
scanned input photograph. The most time-consuming part of the
acquisition was the manual segmentation of the input image into
layers. Because our system uses only one input photograph, the
area behind the church was manually clone brushed (Fig. 1(b)).
The segmentation and clone brushing took about 10 hours. 52 dif-
ferent layers were extracted: Each tree is represented as a separate
layer, and the church itself is decomposed into 13 layers for easier
depth assignment and to allow for occlusion and parallax effects
(Fig. 1(a)).

(a) (b)

Figure 13: St Paul’s Cathedral acquired geometry. (a) Coarse depth
after the use of the vertical tool. (b) Refined depth. Note the chis-
eling on the façades and the shapes of the trees, obtained using a
combination of level sets and depth-from-rgb.

Depth acquisition took an additional three hours. We first de-
fined the ground plane and camera parameters using the method by
Liebowitz et al. [LCZ99]. Three orthogonal pairs of parallel lines
were specified. Each layer was given a coarse billboard depth by
utilizing the automatic vertical plane tool. For those layers without
a clear point of contact with the ground, we used a user-specified
vertical plane. Fig. 13(a) shows this initial coarse depth. We then
used the level-set method to provide the trees and bushes with a
bulgy appearance, which we refined using the depth-from-rgb tool.
The depths for the cars and street furniture were refined with the
box tool.

The church depth was acquired using several tools. The coarse
depth from the vertical tool provided a starting point. We used the
push/pull tool to add relief to the façade windows and buttresses.
We then used the pyramid tool for the tower and turrets, and the
plane tool for the roofs (Fig. 13(b)).

6.2 Editing and other examples

Various editing operations are possible including painting, filter-
ing, and clone brushing. The ability to paint from different view-
points makes it easy to edit foreshortened surfaces and obtain cor-
rect perspective. Copy-pasting, 3D scaling, translation, and rotation

of objects are also possible. The range of rotation, like changes in
viewpoint, are ultimately limited by the geometry of the scene and
disocclusion artifacts.

We also demonstrate relighting applications. Texture and illu-
minance are decoupled using our new filter. Then, the illuminance
channel is modified and multiplied by the texture channel to obtain
the new image. The illuminance can be edited either by specify-
ing 3D light sources, or by directly painting light on the channel.
The latter solution often provides simpler interaction. This is due
to the difficulty of specifying 3D positions and anticipating the re-
sulting lighting effects. Sketching approaches, e.g. [PRJ97] could
be helpful in this context.

We also use cubical panoramas as input, representing them as
a collection of six images (Fig. 14). This provides a dramatic im-
mersive experience and could greatly improve techniques such as
Quicktime VR [Che95] at a reasonable cost.

7 Conclusion and Future Work

We have presented an image-based modeling and editing system
that takes a single photo as input, and allows a user to build a rep-
resentation consisting of layers of images with depth. Interactive
views and a variety of editing operations permit the definition and
manipulation of image-based scenes. The system has been demon-
strated on several examples, including relighting.

Future work includes the merging of this approach with 3D
painting programs, or with alternative image-editing approaches
[EG01]. Many other techniques could be incorporated into our
system. For example, depth assignment could benefit from shape
from shading or from multiple images via stereo correspondence
and epipolar geometry. In addition, handling multiple images of
the same portion of a scene would permit the inclusion of view-
dependent effects.

We believe that our clone brushing and texture-illuminance de-
coupling tools have application beyond the scope of this system.
For example, a simpler version of clone brushing could be adapted
to the 2D case for simple configurations. Our decoupling filter
could be useful in a variety of contexts, including enabling classical
image-based modeling to retrieve uniform texture or to preprocess
the input of texture generation algorithms.
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(a) (b) (c) (d)

Figure 14: Panoramic view of a hotel lobby. (b) is the original viewpoint, and (a),(c) are synthetic viewpoints. (d) visualizes the representation
from a birds-eye view. The red arrow shows the original acquisition point and direction of the panorama. Although the geometry is coarse,
the immersive experience within the room is very convincing.
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Fast Bilateral Filtering
for the Display of High-Dynamic-Range Images

Frédo Durand and Julie Dorsey
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Abstract

We present a new technique for the display of high-dynamic-range
images, which reduces the contrast while preserving detail. It is
based on a two-scale decomposition of the image into a base layer,
encoding large-scale variations, and a detail layer. Only the base
layer has its contrast reduced, thereby preserving detail. The base
layer is obtained using an edge-preserving filter called the bilateral
filter. This is a non-linear filter, where the weight of each pixel is
computed using a Gaussian in the spatial domain multiplied by an
influence function in the intensity domain that decreases the weight
of pixels with large intensity differences. We express bilateral filter-
ing in the framework of robust statistics and show how it relates to
anisotropic diffusion. We then accelerate bilateral filtering by using
a piecewise-linear approximation in the intensity domain and ap-
propriate subsampling. This results in a speed-up of two orders of
magnitude. The method is fast and requires no parameter setting.

CR Categories: I.3.3 [Computer Graphics]: Picture/image
generation—Display algorithms; I.4.1 [Image Processing and Com-
puter Vision]: Enhancement—Digitization and image capture

Keywords: image processing, tone mapping, contrast reduction,
edge-preserving filtering,weird maths

1 Introduction

As the availability of high-dynamic-range images grows due to ad-
vances in lighting simulation, e.g. [Ward 1994], multiple-exposure
photography [Debevec and Malik 1997; Madden 1993] and new
sensor technologies [Mitsunaga and Nayar 2000; Schechner and
Nayar 2001; Yang et al. 1999], there is a growing demand to be
able to display these images on low-dynamic-range media. Our vi-
sual system can cope with such high-contrast scenes because most
of the adaptation mechanisms are local on the retina.

There is a tremendous need for contrast reduction in applica-
tions such as image-processing, medical imaging, realistic render-
ing, and digital photography. Consider photography for example.
A major aspect of the art and craft concerns the management of
contrast via e.g. exposure, lighting, printing, or local dodging and
burning [Adams 1995; Rudman 2001]. In fact, poor management
of light – under- or over-exposed areas, light behind the main char-
acter, etc. – is the single most-commonly-cited reason for rejecting

Figure 1: High-dynamic-range photography. No single global ex-
posure can preserve both the colors of the sky and the details of
the landscape, as shown on the rightmost images. In contrast, our
spatially-varying display operator (large image) can bring out all
details of the scene. Total clock time for this 700x480 image is 1.4
seconds on a 700Mhz PentiumIII. Radiance map courtesy of Paul
Debevec, USC. [Debevec and Malik 1997]

Base Detail Color

Figure 2: Principle of our two-scale decomposition of the input
intensity. Color is treated separately using simple ratios. Only the
base scale has its contrast reduced.

photographs. This is why camera manufacturers have developed
sophisticated exposure-metering systems. Unfortunately, exposure
only operates via global contrast management – that is, it recenters
the intensity window on the most relevant range. If the range of in-
tensity is too large, the photo will contain under- and over-exposed
areas (Fig. 1, rightmost part).

Our work is motivated by the idea that the use of high-dynamic-
range cameras and relevant display operators can address these is-
sues. Digital photography has inherited many of the strengths of
film photography. However it also has the potential to overcome
its limitations. Ideally, the photography process should be de-
composed into a measurement phase (with a high-dynamic-range
output), and a post-process phase that, among other things, man-
ages the contrast. This post-process could be automatic or user-
controlled, as part of the camera or on a computer, but it should
take advantage of the wide range of available intensity to perform
appropriate contrast reduction.

In this paper, we introduce a fast and robust operator that takes
a high-dynamic-range image as input, and compresses the contrast
while preserving the details of the original image, as introduced by
Tumblin [1999]. Our operator is based on a two-scale decomposi-
tion of the image into a base layer (large-scale features) and a detail

Copyright © 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
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others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1-212-869-0481 or e-mail permissions@acm.org. 
© 2002 ACM 1-58113-521-1/02/0007 $5.00
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layer (Fig. 2). Only the base layer has its contrast reduced, thereby
preserving the detail. In order to perform a fast decomposition into
these two layers, and to avoid halo artifacts, we present a fast and
robust edge-preserving filter.

1.1 Overview

The primary focus of this paper is the development of a fast and
robust edge-preserving filter – that is, a filter that blurs the small
variations of a signal (noise or texture detail) but preserves the large
discontinuities (edges). Our application is unusual however, in that
the noise (detail) is the important information in the signal and must
therefore be preserved.

We build on bilateral filtering, a non-linear filter introduced by
Tomasi et al. [1998]. It derives from Gaussian blur, but it prevents
blurring across edges by decreasing the weight of pixels when the
intensity difference is too large. As it is a fast alternative to the
use of anisotropic diffusion, which has proven to be a valuable tool
in a variety of areas of computer graphics, e.g. [McCool 1999;
Desbrun et al. 2000], the potential applications of this technique
extend beyond the scope of contrast reduction.

This paper makes the following contributions:
Bilateral filtering and robust statistics: We recast bilateral filter-
ing in the framework of robust statistics, which is concerned with
estimators that are insensitive to outliers. Bilateral filtering is an
estimator that considers values across edges to be outliers. This al-
lows us to provide a wide theoretical context for bilateral filtering,
and to relate it to anisotropic diffusion.
Fast bilateral filtering: We present two acceleration techniques:
we linearize bilateral filtering, which allows us to use FFT and fast
convolution, and we downsample the key operations.
Uncertainty: We compute the uncertainty of the output of the fil-
ter, which permits the correction of doubtful values.
Contrast reduction: We use bilateral filtering for the display of
high-dynamic-range images. The method is fast, stable, and re-
quires no setting of parameters.

2 Review of local tone mapping

Tone mapping operators can be classified into global and local
techniques [Tumblin 1999; Ferwerda 1998; DiCarlo and Wandell
2000]. Because they use the same mapping function for all pixels,
most global techniques do not directly address contrast reduction.
A limited solution is proposed by Schlick [1994] and Tumblin et
al. [1999], who use S-shaped functions inspired from photography,
thus preserving some details in the highlights and shadows. Unfor-
tunately, contrast is severely reduced in these areas. Some authors
propose to interactively vary the mapping according to the region
of interest attended by the user [Tumblin et al. 1999], potentially
using graphics hardware [Cohen et al. 2001].

A notable exception is the global histogram adjustment by Ward-
Larson et al. [1997]. They disregard the empty portions of the
histogram, which results in efficient contrast reduction. However,
the limitations due to the global nature of the technique become
obvious when the input exhibits a uniform histogram (see e.g. the
example by DiCarlo and Wandell [2000]).

In contrast, local operators use a mapping that varies spatially
depending on the neighborhood of a pixel. This exploits the fact
that human vision is sensitive mainly to local contrast.

Most local tone-mapping techniques use a decomposition of the
image into different layers or scales (with the exception of Socol-
insky, who uses a variational technique [2000]). The contrast is
reduced differently for each scale, and the final image is a recom-
position of the various scales after contrast reduction. The major
pitfall of local methods is the presence of haloing artifacts. When
dealing with high-dynamic-range images, haloing issues become

even more critical. In 8-bit images, the contrast at the edges is lim-
ited to roughly two orders of magnitude, which directly limits the
strength of halos.

Chiu et al. vary a gain according to a low-pass version of the im-
age [1993], which results in pronounced halos. Schlick had similar
problems when he tried to vary his mapping spatially [1994]. Job-
son et al. reduce halos by applying a similar technique at multiple
scales [1997]. Pattanaik et al. use a multiscale decomposition of the
image according to comprehensive psychophysically-derived filter
banks [1998]. To date, this method seems to be the most faithful to
human vision, however, it may still present halos.

DiCarlo et al. propose to use robust statistical estimators to im-
prove current techniques [2000], although they do not provide a
detailed description. Our method follows in the same spirit and fo-
cuses on the development of a fast and practical method.

Tumblin et al. [1999] propose an operator for synthetic images
that takes advantage of the ability of the human visual system to
decompose a scene into intrinsic “layers”, such as reflectance and
illumination [Barrow and Tenenbaum 1978]. Because vision is sen-
sitive mainly to the reflectance layers, they reduce contrast only in
the illumination layer. This technique is unfortunately applicable
only when the characteristics of the 3D scene are known. As we
will see, our work can be seen as an extension to photographs. Our
two-scale decomposition is very related to the texture-illuminance
decoupling technique by Oh et al. [2001].

Recently, Tumblin and Turk built on anisotropic diffusion to
decompose an image using a new low-curvature image simplifier
(LCIS) [Tumblin 1999; Tumblin and Turk 1999]. Their method can
extract exquisite details from high-contrast images. Unfortunately,
the solution of their partial differential equation is a slow iterative
process. Moreover, the coefficients of their diffusion equation must
be adapted to each image, which makes this method more diffi-
cult to use, and the extension to animated sequences unclear. We
build upon a different edge-preserving filter that is easier to con-
trol and more amenable to acceleration. We will also deal with two
problems mentioned by Tumblin et al.: the small remaining halos
localized around the edges, and the need for a “leakage fixer” to
completely stop diffusion at discontinuities.

3 Edge-preserving filtering

In this section, we review important edge-preserving-smoothing
techniques, e.g. [Saint-Marc et al. 1991].

3.1 Anisotropic diffusion

Anisotropic diffusion [Perona and Malik 1990] is inspired by an
interpretation of Gaussian blur as a heat conduction partial differ-
ential equation (PDE): ∂I

∂t = �∆I: That is, the intensity I of each
pixel is seen as heat and is propagated over time to its 4 neighbors
according to the heat spatial variation.

Perona and Malik introduced an edge-stopping function g that
varies the conductance according to the image gradient. This pre-
vents heat flow across edges:

∂I
∂t

= div[g(jj∇Ijj) ∇I]: (1)

They propose two expressions for the edge-stopping function g(x):

g1(x) =
1

1+ x2

σ2

and g2(x) = e�(x
2=σ2)

; (2)

where σ is a scale parameter in the intensity domain that specifies
what gradient intensity should stop diffusion.
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The discrete Perona-Malik diffusion equation governing the
value Is at pixel s is then

It+1
s = It

s +
λ
4 ∑

p2neighb4(s)

g(It
p� It

s) (It
p� It

s); (3)

where t describes discrete time steps, and neighb4(s) is the 4-
neighborhood of pixel s. λ is a scalar that determines the rate of
diffusion.

Although anisotropic diffusion is a popular tool for edge-
preserving filtering, its discrete diffusion nature makes it a slow
process. Moreover, the results depend on the stopping time, since
the diffusion converges to a uniform image.

3.2 Robust anisotropic diffusion

Black et al. [1998] recast anisotropic diffusion in the framework
of robust statistics. Our analysis of bilateral filtering is inspired by
their work. The field of robust statistics develops estimators that are
robust to outliers or deviation to the theoretical distribution [Huber
1981; Hampel et al. 1986].

Black et al. [1998] show that anisotropic diffusion can be seen
as the estimate of a value Is at each pixel s that is an estimate of its
4-neighbors, which minimizes an energy over the whole image:

min ∑
s2Ω

∑
p2neighb4(s)

ρ(Ip� Is); (4)

where Ω is the whole image, and ρ is an error norm (e.g. quadratic).
Eq. 4 can be solved by gradient descent for each pixel:

It+1
s = It

s +
λ
4 ∑

p2neighb4(s)

ψ(Ip� Is); (5)

where ψ is the derivative of ρ, and t is a discrete time variable. ψ
is proportional to the so-called influence function that characterizes
the influence of a sample on the estimate.

For example, a least-square estimate is obtained by using ρ(x) =
x2, and the corresponding influence function is linear, thus resulting
in the mean estimator (Fig. 4, left). As a result, values far from the
mean have a considerable influence on the estimate. In contrast, an
influence function such as the Lorentzian error norm, given in Fig. 3
and plotted in Fig. 4, gives much less weight to outliers and is there-
fore more robust. In the plot of ψ, we see that the influence function
is redescending [Black et al. 1998; Huber 1981]1. Robust norms
and influence functions depend on a parameter σ that provides the
notion of scale in the intensity domain, and controls where the in-
fluence function becomes redescending, and thus which values are
considered outliers.

Black et al. note that Eq. 5 is similar to Eq. 3 govern-
ing anisotropic diffusion, and that by defining g(x) = ψ(x)=x,
anisotropic diffusion is reduced to a robust estimator. They also
show that the g1 function proposed by Perona et al. is equivalent to
the Lorentzian error norm plotted in Fig. 4 and given in Fig. 3.

This analogy allows them to discuss desirable properties of edge-
stopping functions. In particular, they show that Tukey’s biweight
function (Fig. 3) yields more robust results, because it completely
stops diffusion across edges: The influence of outliers is null, as
shown in Fig. 5, as opposed to the Lorentzian error norm that slowly
goes to zero towards infinity. This also solves the termination prob-
lem, since diffusion then converges to a piecewise-uniform image.

1Some authors reserve the term redescending for function that vanish
after a certain value [Hampel et al. 1986].

Huber Lorentz

gσ(x) =

(
1
σ jxj � σ
1
jxj ; otherwise

gσ(x) = 2
2+ x2

σ2

σ σ=

p
2

Tukey Gauss

gσ(x) =

�
1
2 [1� (x=σ)2

]
2 jxj � σ

0; otherwise
gσ(x) = e�

x2

2σ2

σ�
p

5 σ

Figure 3: Robust edge-stopping functions. Note that ψ can be found
by multiplying g by x, and ρ by integration of ψ. The value of
σ has to be modified accordingly to use a consistent scale across
estimators, as indicated below the Lorentz and Tukey functions.

0

1

2

3

4

y

–2 –1 1 2
x –2

–1

0

1

2

y

–2 –1 1 2
x

0

0.5

1

1.5

2

2.5

3

y

–2 –1 1 2
x

–2

–1

0

1

2

y

–2 –1 1 2

x

Least square ρ(x) ψ(x) Lorentz ρ(x) ψ(x)

Figure 4: Least-square vs. Lorentzian error norm (after [Black et al.
1998]).
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Figure 5: Tukey’s biweight (after [Black et al. 1998]).

3.3 Bilateral filtering

Bilateral filtering was developed by Tomasi and Manduchi as an
alternative to anisotropic diffusion [1998]. It is a non-linear filter
where the output is a weighted average of the input. They start
with standard Gaussian filtering with a spatial kernel f (Fig. 6).
However, the weight of a pixel depends also on a function g in the
intensity domain, which decreases the weight of pixels with large
intensity differences. We note that g is an edge-stopping function
similar to that of Perona et al. [1990]. The output of the bilateral
filter for a pixel s is then:

Js =
1

k(s) ∑
p2Ω

f (p� s) g(Ip� Is) Ip; (6)

where k(s) is a normalization term:

k(s) = ∑
p2Ω

f (p� s) g(Ip� Is): (7)

In practice, they use a Gaussian for f in the spatial domain, and
a Gaussian for g in the intensity domain. Therefore, the value at
a pixel s is influenced mainly by pixel that are close spatially and
that have a similar intensity (Fig. 6). This is easy to extend to color
images, and any metric g on pixels can be used (e.g. CIE-LAB).

Barash proposes a link between anisotropic diffusion and bilat-
eral filtering [2001]. He uses an extended definition of intensity
that includes spatial coordinates. This permits the extension of
bilateral filtering to perform feature enhancement. Unfortunately,
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input spatial kernel f influence g in the intensity weight f �g output
domain for the central pixel for the central pixel

Figure 6: Bilateral filtering. Colors are used only to convey shape.

the extended definition of intensity is not quite natural. Elad also
discusses the relation between bilateral filtering, anisotropic diffu-
sion, and robust statistics, but he address the question from a linear-
algebra point of view [to appear]. In this paper, we propose a dif-
ferent unified viewpoint based on robust statistics that extends the
work by Black et al. [1998].

4 Edge-preserving smoothing as robust
statistical estimation

In their paper, Tomasi et al. only outlined the principle of bilat-
eral filters, and they then focused on the results obtained using two
Gaussians. In this section, we provide a principled study of the
properties of this family of filters. In particular, we show that bilat-
eral filtering is a robust statistical estimator, which allows us to put
empirical results into a wider theoretical context.

4.1 A unified viewpoint on bilateral filtering and 0-
order anisotropic diffusion

In order to establish a link to bilateral filtering, we present a differ-
ent interpretation of discrete anisotropic filtering. In Eq. 3, It

p� It
s is

used as the derivative of It in one direction. However, this can also
be seen simply as the 0-order difference between the two pixel in-
tensities. The edge-stopping function can thus be seen as preventing
diffusion between pixels with large intensity differences. The two
formulations are equivalent from a practical standpoint, but Black
et al.’s variational interpretation [1998] is more faithful to Perona
and Malik’s diffusion analogy, while our 0-order interpretation is
more natural in terms of robust statistics.

In particular, we can extend the 0-order anisotropic diffusion to
a larger spatial support:

It+1
s = It

s +λ ∑
p2Ω

f (p� s) g(It
p� It

s) (It
p� It

s); (8)

where f is a spatial weighting function (typically a Gaussian), Ω
is the whole image,and t is still a discrete time variable. The
anisotropic diffusion of Perona et al., which we now call local
diffusion, corresponds to an f that is zero except at the 4 neigh-
bors. Eq. 8 defines a robust statistical estimator of the class of
M-estimators (generalized maximum likelihood estimator) [Ham-
pel et al. 1986; Huber 1981].

In the case where the conductance g is uniform (isotropic filter-
ing) and where f is a Gaussian, Eq. 8 performs a Gaussian blur for
each iteration, which is equivalent to several iterations of the heat-
flow simulation. It can thus be seen as a way to trade the number
of iterations for a larger spatial support. However, in the case of
anisotropic diffusion, it has the additional property of propagating
heat across ridges. Indeed, if the image is white with a black line
in the middle, local anisotropic diffusion does not propagate energy

between the two connected components, while extended diffusion
does. Depending on the application, this property will be either
beneficial or deleterious. In the case of tone mapping, for exam-
ple, the notion of connectedness is not important, as only spatial
neighborhoods matter.

We now come to the robust statistical interpretation of bilateral
filtering. Eq. 6 defines an estimator based on a weighted average of
the data. It is therefore a W -estimator [Hampel et al. 1986]. The
iterative formulation is an instance of iteratively reweighted least
squares. This taxonomy is extremely important because it was
shown that M-estimators and W-estimators are essentially equiv-
alent and solve the same energy minimization problem [Hampel
et al. 1986], p. 116:

min ∑
s2Ω

∑
p2Ω

ρ(Is� Ip) (9)

or for each pixel s:
∑

p2Ω
ψ(Is� Ip) = 0; (10)

where ψ is the derivative of ρ. As shown by Black et al. [1998]
for anisotropic diffusion, and as is true also for bilateral filtering, it
suffices to define ψ(x) = g(x) � x to find the original formulations.
In fact the second edge-stopping function g2 in Eq. 2 defined by
Perona et al. [1990] corresponds to the Gaussian influence function
used for bilateral filtering [Tomasi and Manduchi 1998]. As a con-
sequence of this unified viewpoint, all the studies on edge-stopping
functions for anisotropic diffusion can be applied to bilateral filter-
ing.

Eqs. 9 and 10 are not strictly equivalent because of local min-
ima of the energy. Depending on the application, this can be de-
sirable or undesirable. In the former case, the use of a very robust
estimator, such as the median, to initialize an iterative process is
recommended. In the case of tone mapping or texture-illuminance
decoupling, however, we want to find the local minimum closest to
the initial pixel value.

It was noted by Tomasi et al. [1998] that bilateral filtering usu-
ally requires only one iteration. Hence it belongs to the class of
one-step W-estimators, or w-estimators, which have been shown to
be particularly efficient. The existence of local minima is however
a very important issue, and the use of an initial median estimator is
highly recommended. In contrast, Oh. et al. use a simple Gaussian
blur [2001], which deserves further study.

Now that we have shown that 0-order anisotropic diffusion and
bilateral filtering belong to the same family of estimators, we can
compare them. They both respect causality: No maximum or mini-
mum can be created, only removed. However, anisotropic diffusion
is adiabatic (energy-preserving), while bilateral filtering is not. To
see this, consider the energy exchange between two pixels p and s.
In the diffusion case, the energy λ f (p� s)g(It

p� It
s)(I

t
p� It

s) flow-
ing from p to s is the opposite of the energy from s to p because
the expression is symmetric (provided that g and f are symmet-
ric). In contrast, in bilateral filtering, the normalization factor 1=k
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is different for the two pixels, resulting in an asymmetric energy
flow. Energy preservation can be crucial for some applications, e.g.
[Rushmeier and Ward 1994], but it is not for tone mapping or re-
flectance extraction.

In contrast to anisotropic diffusion, bilateral filtering does not
rely on shock formation, so it is not prone to stairstepping artifacts.
The output of bilateral filtering on a gradient input is smooth. This
point is mostly due to the non-iterative nature of the filter and de-
serves further exploration.

4.2 Robust estimators
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Figure 7: Huber’s minimax (after [Black et al. 1998]).

Fig. 8 plots a variety of robust influence functions, and their For-
mulas are given in Fig. 3. When the influence function is mono-
tonic, there is no local minimum problem, and estimators always
converge to a global maximum. Most robust estimators have a
shape as shown on the left: The function increases, then decreases,
and potentially goes to zero if it has a finite rejection point.

These plots can be very helpful in understanding how an esti-
mator deals with outliers. For example, we can see that the Huber
minimax gives constant influence to outliers, and that the Lorentz
estimator gives them more importance than, say, the Gaussian esti-
mator. The Tukey biweight is the only purely redescending function
we show. Outliers are thus completely ignored.
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Figure 8: Comparison of influence functions.

We anticipate the results of our technique and show in Fig. 9 the
output of a robust bilateral filter using these different ψ functions
(or their g equivalent in Eq. 6). We can see that larger influences of
outliers result in estimates that are more blurred and further from
the input pixels. In what follows, we use the Gaussian or Tukey in-
fluence function, because they are more robust to outliers and better
preserve edges.

5 Efficient Bilateral Filtering

Now that we have provided a theoretical framework for bilateral fil-
tering, we will next deal with its speed. A direct implementation of

Huber Lorentz Gaussian Tukey

Figure 9: Comparison of the 4 estimators for the log of intensity of
the foggy scene of Fig 15. The false-colored output is normalized
to the log of the min and max of the input.

bilateral filtering might require O(n2
) time, where n is the number

of pixels in the image. In this section, we dramatically accelerate
bilateral filtering using two strategies: a piecewise-linear approxi-
mation in the intensity domain, and a sub-sampling in the spatial
domain. We then present a technique that detects and fixes pixels
where the bilateral filter cannot obtain a good estimate due to lack
of data.

5.1 Piecewise-linear bilateral filtering

A convolution such as Gaussian filtering can be greatly accelerated
using Fast Fourier Transform. A O(n2

) convolution in the primal
becomes a O(n) multiplication in the frequency domain. Since the
discrete FFT and its inverse have cost O(n log n), there is a gain of
one order of magnitude.

Unfortunately, this strategy cannot be applied directly to bilat-
eral filtering, because it is not a convolution: The filter is signal-
dependent because of the edge-stopping function g(Ip� Is). How-
ever consider Eq. 6 for a fixed pixel s. It is equivalent to the convolu-
tion of the function HIs : p! g(Ip�Is)Ip by the kernel f . Similarly,
the normalization factor k is the convolution of GIs : p! g(Ip� Is)

by f . That is, the only dependency on pixel s is the value Is in g.
Our acceleration strategy is thus as follows: We discretize the

set of possible signal intensities into NB SEGMENT values fi jg, and
compute a linear filter for each such value:

J j
s =

1
k j(s) ∑

p2Ω
f (p� s) g(Ip� i j

) Ip

=
1

k j(s) ∑
p2Ω

f (p� s) H j
p

(11)

and
k j
(s) = ∑

p2Ω
f (p� s) g(Ip� i j

)

= ∑
p2Ω

f (p� s) G j
(p):

(12)

The final output of the filter for a pixel s is then a linear interpo-
lation between the output J j

s of the two closest values i j of Is. This
corresponds to a piecewise-linear approximation of the original bi-
lateral filter (note however that it is a linearization of the whole
functional, not of the influence function). The pseudocode is given
in Fig. 10.

Fig. 11 shows the speed-up we obtain depending on the size of
the spatial kernel. Quickly, the piecewise-linear version outper-
forms the brute-force implementation, due to the use of FFT con-
volution. The formal analysis of error remains to be performed, but
no artifact was noticeable for segments up to the size of the scale
σr.

This could be further accelerated when the distribution of inten-
sities is not uniform spatially. We can subdivide the image into
sub-images, and if the difference between the max and min of the
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PiecewiseBilateral
(Image I, spatial kernel fσs , intensity influence gσr )

J=0 /* set the output to zero */
for j=0..NB SEGMENTS

i j= minI+j � (max(I)-min(I))/NB SEGMENTS
Gj=gσr (I - i j ) /* evaluate gσr at each pixel */
K j=G j


 fσs /* normalization factor */
H j=G j

� I /* compute H for each pixel */
H� j=H j


 fσs

J j=H� j/K j /* normalize */
J=J+J j

� InterpolationWeight(I, i j )

Figure 10: Pseudo code of the piecewise-linear acceleration of bi-
lateral filtering. Operations with upper cases such as Gj=gσr (I, i j)
denote computation on all pixels of the image. 
 denotes the con-
volution, while � is simply the per-pixel multiplication. Interpola-
tionWeight is the “hat” interpolation weight for linear interpolation.
In practice, we use NB SEGMENT=(max(I)-min(I))/σr.

Figure 11: Speed-up of the piecewise-linear acceleration for 17 seg-
ments and a 576x768 image.

FastBilateral
(Image I, spatial kernel fσs , intensity influence gσr ,
downsampling factor z)

J=0 /*set the full-scale output to zero */
I’=downsample ( I, z )
f 0

σs=z=downsample ( fσs , z )
for j=0..NB SEGMENTS

i j= minI+j � (max(I)-min(I))/NB SEGMENTS
G0 j=gσr (I’-i j ) /* evaluate gσr at each pixel */
K 0 j=G0 j


 f 0

σs=z /* normalization factor */
H 0 j=G0 j

� I’ /* compute H for each pixel */
H 0� j=H 0 j


 f 0

σs=z

J0 j=H 0� j/K 0 j /* normalize */
J j=upsample(J0 j , z)
J=J+J j

� InterpolationWeight(I, i j)

Figure 12: Pseudo code of the downsampled piecewise-linear ac-
celeration of bilateral filtering. Parts at the full resolution are in
green, while downsampled operations are in blue, and downsam-
pled images are denoted with a prime.

intensity is more reduced in the sub-images than in the whole im-
age, fewer segments can be used. This solution has however not
been implemented yet.

5.2 Subsampling

To further accelerate bilateral filtering, we note that all operations in
Fig. 10 except the final interpolation aim at low-pass filtering. We
can thus safely use a downsampled version of the image with little
quality loss. However, the final interpolation must be performed
using the full-scale image, otherwise edges would not be respected,
resulting in visible artifacts. Fig. 12 shows the new algorithm.

We use nearest-neighbor downsampling, because it does not
modify the histogram. The acceleration we obtain is plotted in
Fig. 13 for an example. While a formal study of error/acceleration
remains to be done, we did not notice any visible artifact up to
downsampling factor of 10 to 25. At this resolution, the cost of
the upsampling and linear interpolation outweighs the filtering op-
erations, and no further acceleration is gained by more aggressive
downsampling.

Figure 13: Speed-up due to downsampling for 17 segments and a
576x768 image. The value for the full-scale filtering is 173 sec.

5.3 Uncertainty

As noted by Tumblin et al. [Tumblin 1999; Tumblin and Turk
1999], edge-preserving contrast reduction can still encounter small
halo artifacts for antialiased edges or due to flare around high-
contrast edges. We noticed similar problems on some synthetic
as well as real images. We propose an explanation in terms of
signal/noise ratio. These small halos correspond to pixels where
there is not enough information in the neighborhood to decouple
the large-scale and the small-scale features. Indeed, the values at
the edges span the whole range between the upper and the lower
values, and there are very few pixels in the zone of proper data of
the influence function. We thus compute a statistical estimator with
very little data, and the variance is quite high.

Fortunately, bilateral filtering provides a direct measure of this
uncertainty: The normalization factor k in Eq. 6 is the sum of the
influence of each pixel. We can therefore use it to detect dubious
pixels that need to be fixed. In practice, we use the log of this value
because it better extracts uncertain pixels.

The fixing strategy we use is then simple. We compute a low-
pass version J̃ of the output J of the bilateral filter, using a small
Gaussian kernel (2 pixels in practice), and we assign to a pixel the
value of a linear interpolation between J and J̃ depending on the log
of the uncertainty k.

6 Contrast reduction

We now describe how bilateral filtering can be used for contrast re-
duction. We note that our method is not strictly a tone reproduction
operator, in the sense of Tumblin and Rushmeier’s [1993], since it
does not attempt to imitate human vision.

Building on previous approaches, our contrast reduction is based
on a multiscale decomposition e.g. [Jobson et al. 1997; Pattanaik
et al. 1998; Tumblin and Turk 1999]. However, we only use a two-
scale decomposition, where the “base” image is computed using
bilateral filtering, and the detail layer is the division of the input
intensity by the base layer. Fig. 2 illustrates the general approach.
The base layer has its contrast reduced, while the magnitude of the
detail layer is unchanged, thus preserving detail.

Following Tumblin et al. [Tumblin 1999; Tumblin and Turk
1999], we compress the range of the base layer using a scale factor
in the log domain. We compute this scale factor such that the whole
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range of the base layer is compressed to a user-controllable base
contrast. In practice, a base contrast of 5 worked well for all our
examples, but in some situations where lights sources are visible,
one might want to vary this setting.

Our treatment of color is simple. We perform contrast reduction
on the intensity of pixels and recompose color after contrast reduc-
tion [Schlick 1994; Tumblin 1999; Tumblin and Turk 1999]. We
perform our calculations on the logs of pixel intensities, because
pixel differences then correspond directly to contrast, and because
it yields a more uniform treatment of the whole range.

Our approach is faithful to the original idea by Chiu et al. [1993],
albeit using a robust filter instead of their low-pass filter. It can also
be viewed as the decomposition of the image into intrinsic layers of
reflectance and illuminance [Oh et al. 2001], followed by an appro-
priate contrast reduction of the illuminance (or base) layer [Tumblin
et al. 1999].

For the filtering phase, we experimented with the various in-
fluence functions discussed in Section 4.2. As expected, the Hu-
ber minimax estimator decreases the strength of halos compared to
standard Gaussian blur, but does not eliminate them. Moreover, the
results vary with the size of the spatial kernel. The Lorentz function
performed better, but only the Gaussian and Tukey’s biweight were
able to accurately decompose the image. With both functions, the
scale σs of the spatial kernel had little influence on the result. This
is important since it allows us to keep σs constant to a value of 2%
of the image size.

The value σr = 0:4 performed consistently well for all our ex-
periments. Again, this property is quite important because the user
does not have to set a complex parameter. The significance of this
value might come from two complementary origins, which are still
areas of future research. First, it might be due to characteristics of
the local sensitivity of the human visual system. Perhaps beyond
this value, we notice no difference. Second, it might be related to
the physical range of possible reflectance values, between a perfect
reflector and a black material.

As a conclusion, the only user-controlled parameters of our
method are the overall brightness and the base contrast. While the
automatic values perform very well, we found it useful to provide
these intuitive degrees of freedom to allow the user a control over
the “look” of the image. The base contrast provides a very intuitive
alternative to the contrast/brightness setting of image-editing soft-
ware. It controls the overall appearance of the image, while still
preserving the fine details.

6.1 Implementation and results

We have implemented our technique using a floating point repre-
sentation of images, and the Intel image processing library for the
convolutions. We have tested it on a variety of synthetic and real
images, as shown in the color plates. All the examples reproduced
in the paper use the Gaussian influence function, but the results
with Tukey’s biweight are not different. The technique is extremely
fast, as can be seen in Fig. 14. We have tested it on an upsam-
pled 10Mpixel image with contrast of more than 1:100,000, and the
computation took only 6s on a 2GHz Pentium 4. In particular, due
to our acceleration techniques, the running time grows sub-linearly.
This is a dramatic speed-up compared to previous methods.

Our technique can address some of the most challenging pho-
tographic situations, such as interior lighting or sunset photos, and
produces very compelling images. In our experiments, Tumblin and
Turk’s operator [1999] appears to better preserve fine details, while
our technique better preserves the overall photorealistic appearance
(Figs. 21 and 22).

Image resolution # segments z timing (s)
Grove D 710 * 480 15 4 0.33
Memorial 512 * 768 11 4 0.31
Hotel room 750 * 487 13 4 0.31
Vine 710 * 480 10 4 0.23
Fog 1130 * 751 12 8 0.45
Grove C 709 * 480 14 4 0.30
Window 2K*1.3K 10 16 2.73
Interior 2K*1.3K 19 16 2.19
Interior*2 2.6K * 4K 19 24 6.03

Figure 14: Results of our new technique. Timings on a 2GHz P4.

7 Discussion

This paper opens several avenues of future research related to edge-
preserving filtering and contrast reduction. The unified viewpoint
on bilateral filtering and anisotropic diffusion offers some interest-
ing possibilities. The robust statistical framework we have intro-
duced suggests the application of bilateral filtering to a variety of
graphics areas where energy preservation is not a major concern.

The treatment of uncertainty deserves more attention. The cor-
rection scheme based on a Gaussian blur by a small kernel works
well in the cases we have tested, but a more formal analysis is
needed. Other approaches might involve the use of a different range
scale σr.

In terms of contrast reduction, future work includes the develop-
ment of a more principled fixing method for uncertain values, and
the use of a more elaborate compression function for the base layer,
e.g. [Tumblin et al. 1999; Larson et al. 1997]. White balance is an
important issue for indoor scenes that also exhibit outdoor portions,
as can be seen in Fig. 23. A strategy similar to Pattanaik et al.’s op-
erator [Pattanaik et al. 1998] should be developed. The inclusion of
perceptual aspects is a logical step. The main difficulty stems from
the complex interaction between local adaptation and gaze move-
ments. The extension to animated sequences is an exciting topic.
Initial experiments are very encouraging.

Finally, contrast reduction is only one example of pictorial tech-
niques to cope with the limitations of the medium [Durand 2002].
We believe that these techniques are crucial aspects of the digital
photography and video revolution, and will facilitate the creation
of effective and compelling pictures.
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Figure 15: Foggy scene. Radiance map courtesy of Jack Tumblin,
Northwestern University [Tumblin and Turk 1999].

Figure 16: Grove scene. Radiance map courtesy of Paul Debevec,
USC [Debevec and Malik 1997].
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Figure 17: Interior scene.

Figure 18: Hotel room. The rightmost image shows the uncertainty.
Designed and rendered by Simon Crone using RADIANCE [Ward
1994]. Source image: Proposed Burswood Hotel Suite Refurbish-
ment (1995). Interior Design - The Marsh Partnership, Perth, Aus-
tralia. Computer simulation - Lighting Images, Pert, Australia.
Copyright (c) 1995 Simon Crone.

without with uncertainty fix uncertainty

Figure 19: Zoom of Fig. 17. The haloing artifacts in the vertical
highlight and in the lamp are dramatically reduced. The noise is
due to the sensor.

Figure 20: Vine scene. Radiance map courtesy of Paul Debevec,
USC [Debevec and Malik 1997].
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User-optimized gamma correction
only on the intensity

Histogram adjustment
[Larson et al. 1997]

LCIS. Image reprinted by permission,
copyright c
1999 Jack Tumblin [Tumblin and Turk 1999]

Figure 21: Stanford Memorial Church, displayed with different
methods.

Figure 22: Stanford Memorial Church displayed using bilateral fil-
tering. The rightmost frame is the color-coded base layer. Radiance
map courtesy of Paul Debevec, USC [Debevec and Malik 1997].

Figure 23: Window scene. The rightmost image shows the color-
coded base layer.

266



Permission to make digital/hard copy of part of all of this work for personal or
classroom use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication, and its date appear, and notice is given that copying is by permission
of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee.
© 2003 ACM 0730-0301/03/0700-0950 $5.00
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Abstract

We present an anisotropic mesh denoising algorithm that is effec-
tive, simple and fast. This is accomplished by filtering vertices of
the mesh in the normal direction using local neighborhoods. Mo-
tivated by the impressive results of bilateral filtering for image de-
noising, we adopt it to denoise 3D meshes; addressing the specific
issues required in the transition from two-dimensions to manifolds
in three dimensions. We show that the proposed method success-
fully removes noise from meshes while preserving features. Fur-
thermore, the presented algorithm excels in its simplicity both in
concept and implementation.

CR Categories: I.3.0 [COMPUTER GRAPHICS]: General
Keywords: Mesh Denoising, Bilateral Filtering

1 Introduction

With the proliferation of 3D scanning tools, interest in removing
noise from meshes has increased. The acquired raw data of the sam-
pled model contains additive noise from various sources. It remains
a challenge to remove the noise while preserving the underlying
sampled surface, in particular its fine features. Related techniques
like mesh smoothing or mesh fairing alter the given surface to in-
crease its degree of smoothness. The goal of these techniques is to
create semi-uniform triangulation, often with subdivision connec-
tivity. This paper focuses on mesh denoising, which is an important
preprocess for many digital geometry applications that rely on local
differential properties of the surface.

Denoising the sampled data can be applied either before or af-
ter generating the mesh. The advantage of denoising a mesh rather
than a point-cloud, is that the connectivity information implicitly
defines the surface topology and serves as a means for fast access
to neighboring samples. The information in a mesh can be sepa-
rated into two orthogonal components: a tangential and a normal
component. The normal component encodes the geometric infor-
mation of the shape, and the tangential component holds paramet-
ric information [Guskov et al. 1999]. In this formulation, moving
vertices along their normal directions, modifies only the geometry
of the mesh. Related to this notion are evolution curves [Osher
and Sethian 1988], where points are shifted in the direction of the
normal at a distance that is proportional to their curvature, to get
smoother curves over time. Our denoising method is based on this
idea, shifting mesh vertices along their normal direction.

The extensive research on image denoising serves as a founda-
tion for surface denoising and smoothing algorithms. However,

∗e-mail: {shacharf | idrori | dcor}@tau.ac.il

Figure 1: Denoising a scanned model: On the left is the input
model, in the middle is the result of implicit fairing [Desbrun et al.
1999], and on the right is the result of our algorithm. The top row
visualizes the details of the models, and on the bottom row is a
mean curvature visualization. Data courtesy of Alexander Belyaev.

adapting these algorithms from the two dimensional plane to a sur-
face in three dimensions is not straightforward for three main rea-
sons: (i) Irregularity; unlike images, meshes are irregular both in
connectivity and sampling, (ii) Shrinkage; image denoising algo-
rithms are typically not energy preserving. While this is less no-
ticeable in images, in meshes, this is manifested as shrinkage of
the mesh, (iii) Drifting; naive adaptation of an image denoising
technique may cause artifacts known as vertex drifts, in which the
regularity of the mesh decreases.

The bilateral filter, introduced by Tomasi and Manduchi [1998],
is a nonlinear filter derived from Gaussian blur, with a feature
preservation term that decreases the weight of pixels as a func-
tion of intensity difference. It was shown that bilateral filtering
is linked to anisotropic diffusion [Barash 2002], robust statistics
[Durand and Dorsey 2002], and Bayesian approaches [Elad 2001].
Despite its simplicity, it successfully competes with image denois-
ing algorithms in the above categories. The bilateral filtering of
images and its adaptation to meshes has an intuitive formulation,
which leads to a simple method for selecting the parameters of the
algorithm.

The contribution of this paper is a mesh denoising algorithm that
operates on the geometric component of the mesh. The origin of
the denoising algorithm is the bilateral filter that has a simple and
intuitive formulation, is fast and easy to implement, and adapting it
to meshes, yields results that are as successful as its predecessor.

1.1 Previous work

Image denoising is part of on-going research in image processing
and computer vision. The state-of-the-art approaches to image de-
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noising include: wavelet denoising [Donoho 1995], nonlinear PDE
based methods including total-variation [Rudin et al. 1992], and bi-
lateral filtering [Tomasi and Manduchi 1998]. These approaches
can be viewed in the framework of basis pursuit [Chen et al. 1999].

Typically, mesh denoising methods are based on image denois-
ing approaches. Taubin [1995] introduced signal processing on sur-
faces that is based on the definition of the Laplacian operator on
meshes. Peng et al. [2001] apply locally adaptive Wiener filtering
to meshes. Geometric diffusion algorithms for meshes was intro-
duced by Desbrun et al. [1999], they observed that fairing surfaces
can be performed in the normal direction. Anisotropic diffusion for
height fields was introduced by Desbrun et al. [2000], and Clarenz
et al. [2000] formulated and discretized anisotropic diffusion for
meshes. Recently, Bajaj and Xu [2003] achieved impressive results
by combining the limit function of Loop subdivision scheme with
anisotropic diffusion. Tasdizen et al. [2002] apply anisotropic dif-
fusion to normals of the level-set representation of the surface, and
in the final step, the level-set is converted to a mesh representa-
tion. Guskov et al. [1999] introduced a general signal processing
framework that is based on subdivision, for which denoising is one
application.

2 Bilateral mesh denoising

We open with a description of our method for filtering a mesh us-
ing local neighborhoods. The main idea is to define a local param-
eter space for every vertex using the tangent plane to the mesh at
a vertex. The heights of vertices over the tangent plane are syn-
onymous with the gray-level values of an image, and the closeness
components of the filter are the tangential components. The term
offset is used for the heights. Let S denote the noise-free surface,
and let M be the input mesh with vertices that sample S with some
additive noise. Let v ∈ M be a vertex of the input mesh, d0 its
signed-distance to S, and n0 the normal to S at the closest point to
v. The noise-free surface S is unknown and so is d0, therefore we
estimate the normal to the surface as the normal n to the mesh, and
d estimates d0 as the application of the filter, updating v as follows:

v̂ = v+d ·n. (1)

Note that we do not have to define a coordinate system for
the tangential component; as explained below, we apply a one-
dimensional filter with a spatial distance as a parameter. The filter
is applied to one vertex at a time, computing a displacement for the
vertex and updating its position.

Bilateral filtering of images. Following the formulation of
Tomasi and Manduchi [1998], the bilateral filtering for image I(u),
at coordinate u = (x,y), is defined as:

Î(u) =

∑
p∈N(u)

Wc(‖p−u‖)Ws(|I(u)− I(p)|)I(p)

∑
p∈N(u)

Wc(‖p−u‖)Ws(|I(u)− I(p)|)
, (2)

where N(u) is the neighborhood of u. The closeness smoothing
filter is the standard Gaussian filter with parameter σc: Wc(x) =
e−x2/2σ 2

c , and a feature-preserving weight function, which we refer
to as a similarity weight function, with parameter σs that penalizes
large variation in intensity, is: Ws(x) = e−x2/2σ 2

s . In practice, N(u)
is defined by the set of points {qi}, where ‖u−qi‖ < ρ = d2σce.

Algorithm. We begin introducing the algorithm by describing
how to compute the normal and tangential components that are as-
signed to Eq. 2, yielding a new offset d. Since S is unknown, and
we wish to use the edge preservation property of the bilateral filter,
we define Sv ⊂ S as the smooth connected component of S that is

closest to v. For the normal component, we would like to compute
the offsets of the vertices in the neighborhood of v, denoted by {qi},
over the noise-free smooth component Sv. We use the tangent plane
to v defined by the pair (v,n) as a first-order approximation to Sv.
The offset of a neighbor qi is the distance between qi and the plane.
The following is the pseudo-code for applying a bilateral filter to a
single vertex:

DenoisePoint(Vertex v, Normal n)
{qi} = neighborhood(v)
K = |{qi}|
sum = 0
normalizer = 0
for i := 1 to K

t = ||v−qi||

h =
〈
n,v−qi

〉
wc = exp(−t2/(2σ2

c ))
ws = exp(−h2/(2σ2

s ))
sum += (wc ·ws) ·h
normalizer += wc ·ws

end
return Vertex v̂ = v+n · (sum/normalizer)

The plane that approximates the noise-free surface should on
one hand, be a good approximation of the local surface, and on
the other hand, preserve sharp features. The first requirement leads
to smoothing the surface, while the latter maintains the noisy sur-
face. Therefore, we compute the normal at a vertex as the weighted
average (by the area of the triangles) of the normals to the triangles
in the 1-ring neighborhood of the vertex. The limited neighbor-
hood average smoothes the local surface without over-smoothing.
In some cases, for example, of a synthetic surface, the normal of an
edge vertex will erroneously point to the average direction and lead
to a rounded edge.

For the tangential component, the correct measure of distance
between vertices on the smooth surface is the geodesic distance be-
tween points. Since we use local neighborhoods, we approximate
the geodesic distance using the Euclidean distance. This approx-
imation seems to introduce artifacts in the neighborhood of sharp
features, since vertices that happen to be geodesically far from the
smoothed vertex may be geometrically close. Furthermore, the as-
sumption from differential geometry that a neighborhood of a point
on a surface can be evaluated by a function over the tangent plane
to that point may not be satisfied. Both apparent problems do not
hinder our algorithm because any of the above offending vertices is
penalized by the similarity weight function.

Mesh shrinkage and vertex-drift. Image denoising and smooth-
ing algorithms that are based on (possibly weighted) averaging of
neighborhood, result is shrinkage of the object. Taubin [1995]
solves this problem for the Laplacian operator by alternating shrink
and expand operations. Another common approach is to preserve
the volume of the object as suggested by Desbrun et al. [1999].

Our algorithm, also shrinks the object. This can be observed
when smoothing a vertex that is a part of a curved patch; the offset
of the vertex approaches the average of the offsets in its neighbor-
hood. Therefore, we follow the volume preservation technique.

Vertex-drift is caused by algorithms that change the position of
the vertices along the tangent plane as well as the normal direc-
tion. The result is an increase in the irregularity of the mesh. Our
algorithm moves vertices along the normal direction, and so, no
vertex-drift occurs.

Handling boundaries. Often meshes, in particular scanned data
sets, are not closed. There are two aspects to note here: first, the
shape of the boundary curve, which is the related problem of “mesh
fairing”. Second, is that a filter is defined for a neighborhood of a
point. However for boundary points, part of the neighborhood is
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Figure 2: The shrinkage problem. On the left the model of Max
Planck with heavily added random noise. In the middle the de-
noised model after four iterations of our algorithm without volume
preservation. The Max-Planck model is courtesy of Christian Rössl
from Max Planck Insitut für Informatik.

Figure 3: Comparison with AFP. On the left is the input model, in
the middle is the result denoised by AFP, and on the right is the
result of bilateral mesh denoising. Observe the difference in details
in the area of the lips and eyes. The noisy model and the AFP
denoised models are courtesy of Mathieu Desbrun.

not defined. One common solution to this problem is to define a
virtual neighborhood by reflecting vertices over edges. Our filter
inherently handles boundaries by treating them as sharp edges with
virtual vertices at infinity. The similarity weight sets the weight
of virtual vertices to zero, and thus, the normalization of the entire
filter causes boundaries to be handled correctly.

Parameters. The parameters of the algorithm are: σc, σs, the
kernel size ρ , and the number of iterations. We propose an intuitive
user-assisted method for setting these parameters. Two parameters,
σc and σs are interactively assigned: the user selects a point of
the mesh where the surface is expected to be smooth, and then a
radius of the neighborhood of the point is defined. The radius of the
neighborhood is assigned to σc, and we set ρ = 2σc. Then σs is set
to the standard deviation of the offsets in the selected neighborhood.

One may choose a large σc and perform a few iterations, or
choose a narrow filter and increase the number of iterations. Multi-
ple iterations with a narrow filter has the effect of applying a wider
filter, and results in efficient computation. Using a small value for
σc is sensible for two reasons: (i) large values may cross features as
shown in, and (ii) smaller values result in a smaller neighborhood
which leads to faster computation of every iteration.

In all the results shown in this paper, we used up to five iterations,
we found a small number of iterations sufficient for our purposes,
and advantageous both to the speed of computation and for the nu-
merical stability of the filter.

Noisy data may lead to unstable computation of the normals if
the 1-ring neighborhood of a vertex is used to compute the normals.
For extremely noisy data, the normal to a vertex is computed using
the k-ring neighborhood of the vertex, where k is defined by the
user. For every scanned models that we denoised, the normals were

Figure 4: Results of denoising the face model. On the top row from
left to right are the input noisy mode, the results of [Jones et al.
2003], and our result. On the bottom we zoom on the right eye of
the model, where the bottom left image shows the results of Jones
et al. , and on the bottom right is the result of our method. The face
model is courtesy of Jean-Yves Bouguet.

Figure 5: Results of denoising the Fandisk model. On the left is the
input noisy model, in the middle is the results of [Jones et al. 2003],
and on the right is our result.

computed using the 1-ring neighborhoods. Note that only for the
Max Palanck (Figure 2) model, we were required to use the 2-ring
neighborhood to compute normals.

3 Results

We have implemented the bilateral mesh denoising algorithm as
described in the previous section and compared our results to the
results of the anisotropic denoising of height fields algorithm (AFP)
[Desbrun et al. 2000], Jones et al. [2003], and the implicit fairing
(IF) algorithm [Desbrun et al. 1999] 1. The times are reported on a
1GHz PentiumTM III. In Figure 3, we compare the AFP algorithm
with our results. The mesh with 175K vertices is smoothed by three
iterations in 10 seconds. Observe the preserved details near the
mouth of the model denoised by our algorithm. Figure 1 shows
a comparison with implicit fairing. The smoothness of the object
can be appreciated from the visualization of the mean curvature in
the second row. The model has 17K vertices, and it was denoised
in three iterations, taking 1.8 seconds. In Figure 6 we show the
denoising of a CAD object. Observe that the sharp features are
preserved, but vertices with larger error are treated as outliers and
thus are not smoothed out. For the Max Planck model (Figure2)
(100k vertices), the timing for a single iteration is 5.75 seconds,
and the total number of iterations was four.

1Implementation courtesy of Y. Ohtake
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Figure 6: Denoising of CAD-like model. (a) is the input noisy
model, (b) is the result of two iterations of our algorithm, (c) and
(d) are the result of five iterations of our algorithm, where in (d) the
clean model was superimposed on the denoised model.

Independently, Jones et al. [2003] present a similar algorithm
that uses bilateral filtering for smoothing surfaces. The main dif-
ference between the two methods is in the surface predictor. More
specifically, Jones et al. take the distance between the point and
its projection onto the plane of a neighboring triangle, whereas our
approach takes the distance between a neighboring point and the
tangent plane. While we perform several filtering iterations, Jones
et al. smooth a surface in a single pass. Figure 4 and 5 compare the
results for two different types of models.

Volume preservation is a global operation, whereas denoising is
a local operation. In Figure 2, we visualize the local change of vol-
ume by adding severe synthetic noise (of zero mean and variance
of 0.05% of the diagonal of the bounding box of the model) to the
clean model of Max Planck, and then denoised the model. On the
right, we zoom on a feature of the model, superimposing the origi-
nal mesh on top of the smoothed model, showing that the change in
shape and volume is minimal.

4 Discussion and future work

Choosing the tangent plane as an approximation of Sv is an im-
portant component of our algorithm. Positioning the plane at the
average of the offsets of neighboring points would improve our ap-
proximation of the smooth surface. However, this would nullify the
effect of the similarity term of the bilateral filter. We expect that
computing the offsets over a higher order function such as a poly-
nomial of low degree will reduce the shrinkage problem. Finding a
high-order, feature-preserving function for the noise-free surface is
a difficult problem. In the future, we would like to investigate this
possibility, by combining the bilateral filter with a rational function.

The key points of our algorithm are the choice of tangent plane
and moving vertices along the normal direction. However this
change in vertex position may lead to self-intersection of the de-
noised mesh. During the application of our algorithm to vertices on
two sides of the edge, each vertex moves inwards, for sharp edges
this will cause self-intersection after a number of iterations that is
proportional to the angle of the edge.

The algorithm that we present assumes that the mesh is sampled

regularly. This assumption is made when we fix the values of σc.
Highly irregular meshes are uncommon in scanned data-sets. To
handle irregular data-sets, the parameters must be adjusted locally.

We presented a mesh-denoising algorithm that modifies vertices
in the normal direction. The bilateral filtering algorithm that we
use is practical, clear and simple. The proposed method deals with
irregular meshes and does not perform any reparameterization. In
addition, the only property of the mesh that we use is the topological
information, and therefore, the algorithm can be adapted to point-
based representations.

Acknowledgements

We wish to thank Alexande Belyaev for his numerous remarks and
suggestions. This work was supported in part by the Israel Sci-
ence Foundation founded by the Israel Academy of Sciences and
Humanities, and by the Israeli Ministry of Science, and by a grant
from the German Israel Foundation (GIF).

References
BAJAJ, C. L., AND XU, G. 2003. Anisotropic diffusion of subdivision sur-

faces and functions on surfaces. ACM Transactions on Graphics (TOG)
22, 1, 4–32.

BARASH, D. 2002. A fundamental relationship between bilateral filtering,
adaptive smoothing and the nonlinear diffusion equation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 24, 6.

CHEN, S. S., DONOHO, D. L., AND SAUNDERS, M. A. 1999. Atomic
decomposition by basis pursuit. SIAM Journal on Scientific Computing
20, 1, 33–61.

CLARENZ, U., DIEWALD, U., AND RUMPF, M. 2000. Anisotropic geo-
metric diffusion in surface processing. In IEEE Visualization 2000.
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Non-Iterative, Feature-Preserving Mesh Smoothing
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Frédo Durand
MIT

Mathieu Desbrun
USC

Figure 1: The dragon model (left) is artificially corrupted by Gaussian noise (σ = 1/5 of the mean edge length) (middle), then
smoothed in a single pass by our method (right). Note that features such as sharp corners are preserved.

Abstract

With the increasing use of geometry scanners to create 3D
models, there is a rising need for fast and robust mesh
smoothing to remove inevitable noise in the measurements.
While most previous work has favored diffusion-based iter-
ative techniques for feature-preserving smoothing, we pro-
pose a radically different approach, based on robust statistics
and local first-order predictors of the surface. The robust-
ness of our local estimates allows us to derive a non-iterative
feature-preserving filtering technique applicable to arbitrary
“triangle soups”. We demonstrate its simplicity of imple-
mentation and its efficiency, which make it an excellent so-
lution for smoothing large, noisy, and non-manifold meshes.

Keywords: mesh processing, mesh fairing, robust estima-
tion, mesh smoothing, anisotropic diffusion, bilateral filter-
ing.

1 Introduction

With geometry scanners becoming more widespread and
a corresponding growth in the number and complexity
of scanned models, robust and efficient geometry pro-
cessing becomes increasingly desirable. Even with high-
fidelity scanners, the acquired 3D models are invariably
noisy [Rusinkiewicz et al. 2002; Levoy et al. 2000], and there-
fore require smoothing. Similarly, shapes extracted from
volume data (obtained by MRI or CT devices, for instance)
often contain significant amounts of noise, be it topologi-
cal [Guskov and Wood 2001; Wood et al. 2002] or geomet-
ric [Taubin 1995; Desbrun et al. 1999], that must be removed
before further processing. Removing noise while preserving
the shape is, however, no trivial matter. Sharp features are
often blurred if no special care is taken. To make matters

worse, scanned meshes often have cracks and non-manifold
regions.

1.1 Previous Work

A wide variety of mesh smoothing algorithms have been pro-
posed in recent years. Taubin [1995] pioneered fast mesh
smoothing by proposing a simple, linear and isotropic tech-
nique to enhance the smoothness of triangulated surfaces
without resorting to expensive functional minimizations.
Desbrun et al. [1999] extended this approach to irregular
meshes using a geometric flow analogy, and introduced the
use of a conjugate gradient solver that safely removes the
stability condition, allowing for significant smoothing in rea-
sonable time even on large meshes. Other improvements fol-
lowed, such as a method combining geometry smoothing and
parameterization regularization [Ohtake et al. 2000]. How-
ever, these efficient techniques are all isotropic, and therefore
indiscriminately smooth noise and salient features: a noisy
cube as input will become extremely rounded before becom-
ing smooth. This lack of selectivity is limiting in terms of
applications.

Feature-preserving surface fairing has also been proposed
more recently [Desbrun et al. 2000; Clarenz et al. 2000;
Meyer et al. 2002; Zhang and Fiume 2002; Bajaj and Xu
2003], mostly inspired by image processing work on scale-
space and anisotropic diffusion [Perona and Malik 1990].
The idea behind these approaches is to modify the diffusion
equation to make it non-linear and/or anisotropic. The cur-
vature tensor determines the local diffusion, thus preserving
(or even enhancing) sharp features. Although the results are
of much higher quality, these methods rely on shock forma-
tion to preserve details, which affects the numerical condi-
tioning of the diffusion equations. This can cause significant
computational times, even after mollification of the data.

Other researchers have proposed diffusion-type smoothing
on the normal field itself [Taubin 2001; Belyaev and Ohtake
2001; Ohtake et al. 2002; Tasdizen et al. 2002]; fairing is
achieved by first smoothing the normal field, and then evolv-
ing the surface to match the new normals. Here again, the
results are superior to those from isotropic techniques, but
with roughly similar computational cost as anisotropic dif-
fusion on meshes.

Locally adaptive Wiener filtering has also been used with
success for 3D meshes by Peng et al. [2001], and for point-
sampled surface by Pauly and Gross [2001]. However, these
methods rely on semi-regular connectivity or local param-
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eterization, respectively. A different approach is taken by
Alexa [2002], similar to anisotropic diffusion, though with
larger neighborhoods used for filtering. This also results in
a fast method, and avoids some of the limitations discussed
below, but still relies on a connected mesh and iterative ap-
plication.

The diffusion-based feature-preserving techniques are, in
essence, all local and iterative. From very local derivative ap-
proximations, geometry is iteratively updated until the noise
has been diffused sufficiently. Numerical tools, such as pre-
conditioned conjugate gradient solvers or algebraic multigrid
solvers, can be used to improve efficiency by making the iter-
ations more stable. Nevertheless, the diffusion-type setting
that is the basis of these approaches requires manifoldness,
not always present in raw scanned data. In order to address
the need for robust and fast feature preserving smoothing,
we propose to recast mesh filtering as a case of robust sta-
tistical estimation.

1.2 Robust Statistics

The field of robust statistics is concerned with the develop-
ment of statistical estimators that are robust to the presence
of outliers and to deviations from the theoretical distribu-
tion [Huber 1981; Hampel et al. 1986]. Näıve estimators
such as least-squares give too much influence to outliers, be-
cause the error function or norm they minimize is large for
data points far from the estimator (quadratic in the case of
least squares). In contrast, robust estimators are based on
minimizing an energy that gives low weight to outliers, as
illustrated by the Gaussian robust norm in Fig. 2: after a
certain distance from the estimator, controlled by a scale σ,
an increasingly distant outlier has only limited effect.
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Figure 2: Least-square vs. Gaussian error norm (after [Black
et al. 1998]).

Black et al. [1998] showed that anisotropic diffusion can
be analyzed in the framework of robust statistics. The edge-
stopping functions of anisotropic diffusion [Perona and Ma-
lik 1990] serve the same role as robust energy functions.
Anisotropic diffusion minimizes such a function using an it-
erative method.

The bilateral filter is an alternative edge-preserving fil-
ter proposed by Smith and Brady [1997] (see also [Tomasi
and Manduchi 1998]). The output E(p) at a pixel p is a
weighted average of the surrounding pixels in the input im-
age I , where the weight of a pixel q depends not only on
the spatial distance ||q−p||, but also on the signal difference
||I(q) − I(p)||:

E(p) =
1

k(p)

∑
q∈Ω

I(q) f(q − p) g(I(q)− I(p)), (1)

where k(p) is the normalization factor

k(p) =
∑
q∈Ω

f(q − p) g(I(q) − I(p)) (2)

In practice, a spatial Gaussian f and a Gaussian influence
weight g are often used.

This dependence on the signal difference allows one to
give less influence to outliers. Durand and Dorsey [2002]
show that bilateral filtering is a robust estimator and that
a Gaussian influence weight corresponds to minimizing a
Gaussian error norm. They also show that bilateral filter-
ing is essentially similar to anisotropic diffusion. However,
the bilateral filter is a non-iterative robust estimator, or w-
estimator [Huber 1981], which makes it more efficient than
iterative schemes. In particular, this approach does not have
to deal with shock formation at strong edges, and is therefore
more stable than anisotropic diffusion. See also the work by
Barash [2001] and Elad [2002].

1.3 Contributions

In this paper, we propose a novel feature-preserving fair-
ing technique for arbitrary surface meshes based on non-
iterative, robust statistical estimations1. Contrasting dras-
tically with previous diffusion-based methods, our fast and
stable approach relies on local robust estimations of shape.
Moreover, our method does not require manifoldness of the
input data, and can therefore be applied to “triangle soup”.

One of our key insights is that feature preserving smooth-
ing can be seen as estimating a surface in the presence of
outliers. The extension from existing robust statistics tech-
niques to surface filtering is, however, far from trivial be-
cause of the nature of the data: in a mesh, the spatial loca-
tion and the signal are one and the same. This makes the
definition of outliers and the control of their influence chal-
lenging. We propose to capture the smoothness of a surface
by defining local first-order predictors. Using a robust esti-
mator, we find the new position of each vertex as weighted
sum of the predictions from the predictions in its spatial
neighborhood. We will show that our method treats points
on opposite sides of a sharp feature as outliers relative to
one another. This limits smoothing across corners, which
preserves features.

2 Non-Iterative, Feature-Preserving Mesh
Smoothing

We cast feature-preserving mesh filtering as a robust esti-
mation problem on vertex positions. The estimate for a
vertex is computed using the prediction from nearby trian-
gles. Moving each vertex to a robust estimate of its position
removes noise and smoothes the mesh while preserving fea-
tures.

2.1 Robust Estimation of Vertex Positions

To allow the proper definition of outliers, we must separate
spatial location and signal. We capture surface smoothness
using first-order predictors, i.e., tangent planes. In practice
we use predictors based on triangles of the mesh as they
represent natural tangent planes to the surface. The surface
predictor Πq defined by a triangle q is just the tangent plane
of q (see Fig. 3a).

We use a method analogous to bilateral filtering for images
[Smith and Brady 1997; Tomasi and Manduchi 1998], but we
form the estimate for the new position of a vertex p based
on the predictions Πq(p) from its spatially nearby triangles.

1In a contemporaneous work, Fleishman et al. [2003] present
a similar technique (cf. Section 4).
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Figure 3: (a) The prediction Πq(p) for a point p based on the surface at q is the projection of p to the plane tangent to
the surface at q. Points across a sharp feature result in predictions that are farther away, and therefore given less influence.
(b) Noisy normals can lead to poor predictors. (c) Mollified normal alleviate this problem. Note that corners are preserved
because points are not displaced by the mollification: only the normals are smoothed.

We employ a spatial weight f that depends on the distance
||p− cq || between p and the centroid cq of q. We also use an
influence weight g that depends on the distance ||Πq(p)−p||
between the prediction and the original position of p. Finally
we weight by the area aq of the triangles to account for
variations in the sampling rate of the surface. The estimate
p′ for a point on surface S is then:

p′ =
1

k(p)

∑
q∈S

Πq(p) aq f(||cq − p||) g(||Πq(p) − p||), (3)

where k is a normalizing factor (sum of the weights)

k(p) =
∑
q∈S

aq f(||cq − p||) g(||Πq(p) − p||), (4)

Gaussians are used both for the spatial weight f and for
the influence weight g in this paper. Other robust influence
weights could also be used, but Gaussians have performed
well in our experiments, as well as the work of others [Smith
and Brady 1997; Tomasi and Manduchi 1998; Durand and
Dorsey 2002]. The amount of smoothing is controlled by the
widths σf of the spatial and σg of the influence weight Gaus-
sians. As can be seen in Fig. 3(a), predictions from across a
sharp feature are given less weight because the distance be-
tween the prediction Πq(p) and p is large, and is penalized
by the influence weight g.

Filtering a mesh involves evaluating Equation (3) for every
vertex and then moving them as a group to their estimated
positions. Note that no connectivity is required beyond tri-
angles: we simply use the Euclidean distance to the centroid
of surrounding triangles to find the spatial neighborhood of
a vertex. A wider spatial filter includes a larger number
of neighbors in the estimate, and can therefore remove a
greater amount of noise, or smooth larger features. The in-
fluence weight determines when the predictions of neighbors
are considered outliers (by according them less weight), and
thereby controls the size of features that are preserved in the
filtering.

As shown by Black et al.[1998] and Durand and
Dorsey [2002], the evaluation of Equation (3) corresponds
to approximately minimizing

E(p) =

∫
q∈S

f(||cq − p||) ρ(||Πq(p) − p||) dq, (5)

where ρ(||Πq(p) − p||) is the distance between a vertex and
its predicted position under a robust error norm ρ [Hampel
et al. 1986]. Robust error norms are bounded above by some
maximum error, as discussed in Section 1.2. In our case, we
seek to minimize a Gaussian error norm (see Fig. 2); The
relation between ρ and g is g(x) ≡ ρ′(x)/x [Black et al.
1998; Durand and Dorsey 2002; Hampel et al. 1986].

2.2 Mollification

Our predictors are based on the orientation of the tangent
planes, as defined by the facet normals. Since the normals
are first-order properties of the mesh, they are more sensi-
tive to noise than vertex positions (Fig. 3(b)). Even so, the
robust estimator performs well; we can however significantly
improve the estimate with mollification [Huber 1981; Murio
1993]. We mollify our estimators by smoothing the normals.

We first perform a pass of non-robust smoothing using
Equation (3) without the influence weight, and with the sim-
plest predictor, Πq(p) = cq, corresponding to simple Gaus-
sian smoothing. We use a different width for the spatial filter
during mollification, and in practice have always set this to
σf/2. The normals of the mollified mesh are then copied to
the facets of the original mesh before the robust filtering is
performed. Notice that we do not alter the positions of the
vertices at all: we only need to mollify the first-order prop-
erties (the normals), not the 0-order location (see Fig. 3(c)).
Some normals might be improperly smoothed by mollifica-
tion near corners. This is why it is important not to move
the vertices during mollification in order to preserve these
features. Fig. 4 shows a comparison of filtering with and
without mollification. Without mollification, the facet nor-
mals of the mesh are much noisier, resulting in less effective
smoothing.

2.3 Feature Preservation

The filtering method we have proposed preserves features
through two combined actions. First is the use of a robust
influence weight function, as discussed, while the second is
our use of a predictor for vertex positions based on the tan-
gent planes of the mesh. This predictor does not move ver-
tices located at sharp features separating smooth areas of
the mesh, since feature vertices are “supported” by the pre-
diction from both sides. Neither of these actions is sufficient
alone (see the discussion of Fig. 7 below for examples of
how the influence weight affects the filter), but together they
provide excellent feature-preserving behavior. Note the con-
nection to bilateral filtering for images, which uses a prior
of piecewise constant images. This is a special case of our
formulation, corresponding to the predictor Πq(p) = cq. As
well, the use of the existing mesh facets helps to simplify our
formulation and its implementation, as they provide direct
estimates for surface tangents.

In essence, our technique also relates to ENO/WENO
methods [Osher and Fedkiw 2002], a class of finite-difference-
based, shock capturing numerical techniques for hyperbolic
PDE integration. In a nutshell, they seek to avoid dissi-
pation of shocks –the equivalent of sharp features in our
geometric setting. They base their local evaluation of differ-
ential quantities only on the local neighbors of similar field
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(a) Initial mesh (b) isotropic smoothing (c) our approach (d) our approach with (e) our complete
[Desbrun et al. 1999] without mollification no influence weight g approach

Figure 4: Isotropic filtering vs. our method. Notice that details such as the upper and lower lids and the eye are better
preserved, while flat regions are equivalently smoothed. (Original mesh courtesy of Jean-Yves Bouguet.)

value. For example, the evaluation of a second derivative
at a shock is not centered as this would use information on
both sides; in contrast the evaluation is one-sided to prevent
numerical dissipation. Robust statistics offers a principled
framework to extend similar key concepts to geometry.

3 Results

We demonstrate our results in Figs. 1 and 4-8. In each
case, we use Gaussians for the spatial (f), influence weight
(g), and mollification filters with standard deviations of
σf , σg,

σf

2
, respectively. This choice for g corresponds to

a Gaussian error norm. All meshes are rendered with flat
shading to show faceting. Table 1 summarizes our results
and the parameters used to generate them, given in terms of
the mean edge length (||e||) of the particular mesh. The cost
of each evaluation of Equation (3) depends on the number of
facets that lie within the support of f , so the time to filter a
mesh grows approximately as the size of the mesh times σ2

f .
Fig. 4 shows a portion of a mesh from a 3D scan of a head.

We show the original mesh, the result of isotropic smoothing
by Desbrun et al. [1999], and our technique. We present this
comparison to demonstrate the effectiveness of our approach
for smoothing, even on noisy meshes with topological errors.

A comparison to the Wiener filtering approach of Peng et
al [2001] is shown in Fig. 6. The parameters for our method
were chosen to visually match the smoothness in flat areas.
Our method preserves features better for larger amounts of
smoothing (compare 6(d) and 6(e)). Also, as noted previ-
ously, Wiener filtering requires resampling the input to a
semi-regular mesh, and only operates on surfaces with man-
ifold topology, while our method can be applied more gener-
ally, to non-regular and disconnected meshes. We estimate
that their implementation would take about 15 seconds to fil-
ter this mesh on our machine, in comparison to 60 (or more,
depending on the smoothing parameters) for our technique.

In Fig. 10 we compare our method to anisotropic diffu-
sion smoothing by Clarenz et al. [2000]. The original, noisy
mesh is smoothed and smaller features removed by four it-
erations of diffusion. We have chosen the parameters of our
method to match the result as closely as possible. One bene-
fit of anisotropic diffusion is the ability to iteratively enhance

Model Fig. Verts. Time σf/||e||/ σg/||e||
Dragon 1 100k 80 s 4 (14) 1 (4)
head

Face 4(d) 41k 16 s 1.5 (9.2) 0.4 (2.4)
(c) 10 s 1.5 (0.9) 0.5 (0.3)

Dog 6(c) 195k 82 s 2.7 (6.6)) 0.4 (0.9)
(e) 132 s 4 (9.9) 1.3 (3.3)

Bunny 7(b) 35k 11 s 2 (12) 0.2 (1.2)
(c) 12 s 2 (1.2) 4 (24)
(d) 23 s 4 (24) 4 (24)

Venus 10 134k 54 s 2.5 (8.1) 1 (3.3)
Dragon 8 100k 79 s 4 (14) 2 (7)

Table 1: Results on a 1.4Ghz Athlon with 2GB of RAM.
Times do not include the time to load meshes. The σs are
expressed as ratios of the mean edges length ||e||, and the
numbers in parentheses are in thousandths of the bounding
box diagonal for the particular meshes.

Figure 5: (a) Values of σf and σg that yield the most accu-
rate denoising for a mesh corrupted with Gaussian noise, as
a function of the variance of the noise. (b) Evolution of the
error for a given noise level as a function of σf and σg. All
values are in terms of the mean edge length.

edges and corners. Our method is not able to perform such
enhancement in a single pass, resulting in a slightly differ-
ent overall appearance, particularly in the hair, and slightly
more noise around edges in the model.

We also show a false-color plot of the confidence mea-
sure k in Fig. 10. As can be seen, smoother areas (such as
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Original Wiener (low noise) our method Wiener (high noise) our method

Figure 6: Comparison of our method and Wiener filtering. Parameters for Wiener filtering from [Peng et al. 2001]. Parameters
for our method chosen to approximately match surface smoothness in flat areas. (Original and Wiener filtered meshes courtesy
of Jianbo Peng.)

original noise removal smooth small features smooth large features
narrow spatial, narrow influencenarrow spatial, wide influence wide spatial, wide influence

(σf = 2, σg = 0.2) (σf = 2, σg = 4) (σf = 4, σg = 4)

Figure 7: The effect of varying spatial and influence weight functions. Filter widths σf , σg given in terms of mean edge length
in the mesh. (Mesh from the Stanford University Computer Graphics Laboratory 3D scanning repository.)

the cheek) and features bordered by smooth areas (such as
the edges of the nose) have higher confidence, while curved
areas or those near more complicated features have lower
confidence. See also Fig. 8.

We show the effects of varying spatial and influence weight
function widths in Fig. 7. For a wide spatial filter but narrow
influence weight, the mesh is smoothed only in mostly flat
areas. In the converse, a narrow spatial filter and wide in-
fluence weight, small features are smoothed away but larger
variations kept. Finally, for a wide spatial filter and wide
influence weight, only the largest and strongest features are
preserved. See Fig. 8 for a similar example of our method
used to remove all but the most salient features of a mesh.

In order to facilitate denoising with our approach, we have
performed experiments to find good values for σf and σg to
smooth a model corrupted with a given amount of noise,
such as might be produced by a scanner. If the amount of
noise can be quantified, by examining an area on the model
known to be flat, for example, then the plot in Fig. 5(a)
shows the optimal values for σf , σg from our experiments.
These values have been found effective on several models.
The surface plot in Fig. 5(b) shows how, for a particular
(representative) noise level, the post-filtering error changes.
As can be seen, the error is most sensitive to σf . We compute
the error as the L2 distance between the original mesh before
corruption and the filtered mesh [Khodakovsky et al. 2000].

In other applications, our general approach has been to
increase σf and σg together until the filtered mesh is suf-

ficiently smooth for our goals. We then decrease σg until
features or noise that we are trying to remove begin to reap-
pear.

All of our results demonstrate the effectiveness of our tech-
nique at feature preservation, due to a combination of a ro-
bust influence weight function and a first-order predictor, as
discussed in Section 2.3. In particular, the tips of the ears
of the bunny are preserved, as are the head and extremities
of the dragon. See also Fig. 9, part of a scan of an origami
piece.

We apply our filtering method to a mesh corrupted with
synthetic noise in Fig. 1. In the noisy mesh, each vertex
is displaced by zero-mean Gaussian noise with σnoise = 1

5
of the mean edge length, along the normal. We filter the
dragon mesh to recover an estimate of the original shape.
For comparison, in the scanned mesh of Fig. 4 we estimate
σnoise ≈ 1

7
. These results shows the ability of our method

to smooth even in the presence of extreme amounts of noise.
Fig. 4 also indicates an area where our algorithm could be
improved. Where a feature and noise coincide (e.g. in the
nose), it is difficult to correctly separate the two. In Fig. 1,
we have aimed for a smoother reconstruction, but lose some
details in the process.

We have applied two basic optimizations to our imple-
mentation. We truncate the spatial filter at 2σf to limit
the number of estimates that must be considered per vertex.
This does not noticeably affect the results. We also group
vertices and facets spatially for processing, to improve local-
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ity of reference.
As presented, our method is not necessarily volume pre-

serving. We have not encountered a mesh where this is an
issue. Adjusting the mesh after filtering to preserve its vol-
ume is a straightforward extension [Desbrun et al. 1999].

4 Conclusion and Future Work

We have developed a novel, fast feature-preserving surface
smoothing and denoising technique, applicable to triangle
soups. We use a first-order predictor to capture the local
shape of smooth objects. This decouples the signal and the
spatial location in a surface, and allows us to use robust
statistics as a solid base for feature preservation. A robust
error norm is applied to the predictors and the vertex posi-
tions, from which we derive an efficient and stable one-step
smoothing operator. Mollification is used to better capture
shape and to obtain more reliable detection of outliers and
features. We have demonstrated our algorithm on several
models, for both noise removal and mesh smoothing.

Contemporaneous with this work, Fleishman et al. [2003]
have proposed an extension of bilateral filtering to meshes
with similar goals as this work, but with a different approach.
The main contrasts are that vertex normals are computed
from the mesh to perform local projections, after which a
vertex’s updated position is computed as the bilateral filter
of its neighborhood treated as a height field. In rough terms,
their method is faster but requires a connected mesh. The
speed increase is due to two factors: they do not mollify
normals, and the density of triangles is roughly half that of
vertices in a mesh. They require connectivity to estimate
normals. They also apply their filter iteratively, while we
have concentrated on a single-pass technique. There is also
a fundamental difference in how the two methods form pre-
dictions for a vertex’s filtered position. Our method projects
the central vertex to the planes of nearby triangles, while
that of Fleishman et al. projects nearby vertices to the plane
of the central vertex. The relative costs and benefits of these
two approaches merits further study.

There are several avenues for improvement of our method.
The normalization factor k in Equation (3) is the sum of
weights applied to the individual estimates from a point’s
neighborhood (see Fig. 10). It therefore provides a mea-
sure of the confidence that should be attached to the esti-
mate of the point’s new position, as noted by Durand and
Dorsey [2002]. We have not made use of the confidence mea-
sure k in this work, but feel that it could be a valuable tool
in future approaches. In particular, we believe that it could
be used to detect areas where a good estimate could not be
formed, as on the sharp features in Fig. 1. Such areas could
be processed further, perhaps by iterative filtering.

In our experience, the O(σ2
f ) growth rate of our algorithm

has not been a limiting factor. If it were to become so, a
promising approach is to subsample the mesh by simplify-
ing it with some fast method, and then filter the original
mesh vertices based on the simplified version. Our method
should also extend easily to out-of-core evaluation, since it
does not require connectivity information and since the com-
putations are spatially local. This would allow our method
to be applied to extremely large models.

Finally, the extension of robust statistics to meshes sug-
gests other possibilities for their application. The influence
weight could include other data on the mesh, such as color.
It should also be straightforward to extend our filter to other
shape representations, such as volume data or point-sample
models [Zwicker et al. 2002]. In the latter case, where each

Figure 8: Original and smoothed dragon, and the confidence
k for the smoothed dragon. Note that sharp features are pre-
served while other details are removed. (Mesh from the Stan-
ford University Computer Graphics Laboratory 3D scanning
repository.)

sample includes a normal, the methods transfer directly, as
should the results. We also plan to explore how robust statis-
tics could be added to existing techniques for surface ap-
proximation, such as Moving Least Squares [Levin 2001], to
improve their robustness and sensitivity to noise.
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Flash Photography Enhancement via Intrinsic Relighting

Elmar Eisemann∗
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Figure 1: (a) Top: Photograph taken in a dark environment, the image is noisy and/or blurry. Bottom: Flash photography provides a sharp but
flat image with distracting shadows at the silhouette of objects. (b) Inset showing the noise of the available-light image. (c) Our technique
merges the two images to transfer the ambiance of the available lighting. Note the shadow of the candle on the table.

Abstract

We enhance photographs shot in dark environments by combining
a picture taken with the available light and one taken with the flash.
We preserve the ambiance of the original lighting and insert the
sharpness from the flash image. We use the bilateral filter to de-
compose the images into detail and large scale. We reconstruct the
image using the large scale of the available lighting and the detail
of the flash. We detect and correct flash shadows. This combines
the advantages of available illumination and flash photography.

Keywords: Computational photography, flash photography, re-
lighting, tone mapping, bilateral filtering, image fusion

1 Introduction

Under dark illumination, a photographer is usually faced with a
frustrating dilemma: to use the flash or not. A picture relying

∗e-mail: eisemann@graphics.csail.mit.edu, fredo@mit.edu
†ARTIS is a research project in the GRAVIR/IMAG laboratory, a joint

unit of CNRS, INPG, INRIA and UJF.

on the available light usually has a warm atmosphere, but suffers
from noise and blur (Fig. 1(a) top and (b)). On the other hand,
flash photography causes three unacceptable artifacts: red eyes,
flat and harsh lighting, and distracting sharp shadows at silhouettes
(Fig. 1(a) bottom). While much work has addressed red-eye re-
moval [Zhang and Lenders 2000; Gaubatz and Ulichney 2002], the
harsh lighting and shadows remain a major impediment.

We propose to combine the best of the two lightings by taking
two successive photographs: one with the available lighting only,
and one with the flash. We then recombine the two pictures and
take advantage of the main qualities of each one (Fig. 1(c)). Our
central tool is a decomposition of an image into a large-scale layer
that is assumed to contain the variation due to illumination, and a
small-scale layer containing albedo variations.

Related work Most work on flash photography has focused on
red-eye removal [Zhang and Lenders 2000; Gaubatz and Ulichney
2002]. Many cameras use a pre-flash to prevent red eyes. Profes-
sional photographers rely on off-centered flash and indirect lighting
to prevent harsh lighting and silhouette shadows.

Our work is related to the continuous flash by Hoppe and Toyama
[2003]. They use a flash and a no-flash picture and combine them
linearly. The image-stack interface by Cohen et al. [2003] pro-
vides additional control and the user can spatially vary the blending.
Raskar et al. [2004] and Akers et al. [2003] fuse images taken with
different illuminations to enhance context and legibility. DiCarlo et
al. [2001] use a flash and a no-flash photograph for white balance.

Multiple-exposure photography allows for high-dynamic-range
images [Mann and Picard 1995; Debevec and Malik 1997]. New
techniques also compensate for motion between frames [Kang et al.
2003; Ward 2004]. Note that multiple-exposure techniques are dif-
ferent from our flash-photography approach. They operate on the
same lighting in all pictures and invert a non-linear and clamped
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Figure 2: We take two images with the available light and the flash
respectively. We decouple their color, large-scale and detail inten-
sity. We correct flash shadows. We re-combine the appropriate
layers to preserve the available lighting but gain the sharpness and
detail from the flash image.

response. In contrast, we have a quite-different lighting in the two
images and try to extract the lighting ambiance from the no-flash
picture and combine it with the fine detail of the flash picture.

We build on local tone-mapping techniques that decompose an
image into two or more layers that correspond to small- and large-
scale variations, e.g. [Chiu et al. 1993; Jobson et al. 1997; Tumblin
and Turk 1999; DiCarlo and Wandell 2000; Durand and Dorsey
2002; Reinhard et al. 2002; Ashikhmin 2002; Choudhury and Tum-
blin 2003]. Only the contrast of the large scales is reduced, thereby
preserving detail.

These methods can be interpreted in terms of intrinsic images
[Tumblin et al. 1999; Barrow and Tenenbaum 1978]. The large
scale can be seen as an estimate of illumination, while the detail
corresponds to albedo [Oh et al. 2001]. Although this type of de-
coupling is hard [Barrow and Tenenbaum 1978; Weiss 2001; Tap-
pen et al. 2003], tone mapping can get away with a coarse approx-
imation because the layers are eventually recombined. We exploit
the same approach to decompose our flash and no-flash images.

A wealth of efforts has been dedicated to relighting, e.g.
[Marschner and Greenberg 1997; Sato et al. 1999; Yu et al. 1999].
Most methods use acquired geometry or a large set of input images.
In contrast, we perform lighting transfer from only two images.

In this volume, Petschnigg et al. [2004] present a set of tech-
niques based on flash/no-flash image pairs. Their decoupling ap-
proach shares many similarities with our work, in particular the
use of the bilateral filter. The main difference between the two ap-
proaches lies in the treatment of flash shadows.

2 Image decoupling for flash relighting

Our approach is summarized in Fig. 2. We take two photos, with
and without the flash. We align the two images to compensate for
camera motion between the snapshots. We detect the shadows cast
by the flash and correct color using local white balance. We finally
perform a non-linear decomposition of the two images into large-
scale and detail layers, and we recombine them appropriately.

We first present our basic technique before discussing shadow
correction in Section 3. We then introduce more advanced recon-
struction options in Section 4 and present our results in Section 5.

Taking the photographs The two photographs with and with-
out the flash should be taken as rapidly as possible to avoid motion
of either the photographer or subject. The response curve between
the two exposures should ideally be known for better relative radio-
metric calibration, but this is not a strict requirement. Similarly, we
obtain better results when the white balance can be set to manual.
In the future, we foresee that taking the two images in a row will be
implemented in the firmware of the camera. To perform our exper-
iments, we have used a tripod and a remote control (Fig. 1 and 8)
and hand-held shots (Fig. 2, 5, 7). The latter in particular requires
good image alignment. In the rest of this paper, we assume that the
images are normalized so that the flash image is in [0,1].

The registration of the two images is not trivial because the light-
ing conditions are dramatically different. Following Kang et al.
[2003], we compare the image gradients rather than the pixel val-
ues. We use a low-pass filter with a small variance (2 pixels) to
smooth-out the noise. We keep only the 5% highest gradients and
we reject gradients in regions that are too dark and where informa-
tion is not reliable. We use a pyramidal refinement strategy similar
to Ward [2004] to find the transformation that minimizes the gra-
dients that were kept. More advanced approaches could be used to
compensate for subject motion, e.g. [Kang et al. 2003].

Bilateral decoupling We first decouple the images into inten-
sity and color (Fig. 2). Assume we use standard formulas, although
we show in the appendix that they can be improved in our context.
The color layer simply corresponds to the original pixel values di-
vided by the intensity. In the rest of the paper, we use I f and In f for
the intensity of the flash and no-flash images.

We then want to decompose each image into layers correspond-
ing to the illumination and the sharp detail respectively. We use
the bilateral filter [Tomasi and Manduchi 1998; Smith and Brady
1997] that smoothes an image but respects sharp features, thereby
avoiding halos around strong edges [Durand and Dorsey 2002].

The bilateral filter is defined as a weighted average where the
weights depend on a Gaussian f on the spatial location, but also
on a weight g on the pixel difference. Given an input image I, The
output of the bilateral filter for a pixel s is:

Js =
1

k(s) ∑
p∈Ω

f (p− s) g(Ip − Is) Ip, (1)

where k(s) is a normalization: k(s) = ∑p∈Ω f (p− s) g(Ip − Is). In
practice, g is a Gaussian that penalizes pixels across edges that have
large intensity differences. This filter was used by Oh et al. [2001]
for image editing and by Durand et al. for tone mapping [2002].

We use the fast bilateral filter where the non-linear filter is ap-
proximated by a set of convolutions [Durand and Dorsey 2002].
We perform computation in the log10 domain to respect intensity
ratios. The output of the filter provides the log of the large-scale
layer. The detail layer is deduced by a division of the intensity by
the large-scale layer (subtraction in the log domain). We use a spa-
tial variance σ f of 1.5% of the images diagonal. For the intensity
influence g, we use σg = 0.4, following Durand and Dorsey [2002].
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Figure 3: Basic reconstruction and shadow correction. The flash shadow on the right of the face and below the ear need correction. In the
naı̈ve correction, note the yellowish halo on the right of the character and the red cast below its ear. See Fig. 4 for a close up.

Figure 4: Enlargement of Fig. 3. Correction of smooth shadows. From left to right: no flash, flash, naı̈ve white balance, our color correction

Reconstruction Ignoring the issue of shadows for now, we can
recombine the image (Fig. 2). We use the detail and color layer of
the flash image because it is sharper and because white balance is
more reliable. We use the large-scale layer of the no-flash picture
in order to preserve the mood and tonal modeling of the original
lighting situation. The layers are simply added in the log domain.
Fig. 3 illustrates the results from our basic approach. The output
combines the sharpness of the flash image with the tonal modeling
of the no-flash image.

For dark scenes, the contrast of the large scale needs to be en-
hanced. This is the opposite of contrast reduction [Durand and
Dorsey 2002]. We set a target contrast for the large-scale layer
and scale the range of log values accordingly. The low quantiza-
tion from the original image does not create artifacts because the
bilateral filter results in a piecewise-smooth large-scale layer.

In addition, we compute the white balance between the two im-
ages by computing the weighted average of the three channels with
stronger weights for bright pixels with a white color in the flash
image. We then take the ratios wr, wg, wb as white-balance coeffi-
cients. This white balance can be used to preserve the warm tones
of the available light. In practice, the color cast of the no-flash im-
age is usually too strong and we only apply it partially using wt

where t is usually 0.2.
We must still improve the output in the flash shadow. While

their intensity is increased to match the large scale of the no-flash
image, there is a distinct color cast and noise. This is because, by
definition, these areas did not receive light from the flash and inherit
from the artifacts of the no-flash image. A ring flash might reduce
these artifacts, but for most cameras, we must perform additional
processing to alleviate them.

3 Shadow treatment

In order to correct the aforementioned artifacts, we must detect the
pixels that lie in shadow. Pixels in the umbra and penumbra have
different characteristics and require different treatments. After de-
tection, we correct color and noise in the shadows. The correction
applied in shadow is robust to false positives; Potential detection
errors at shadow boundaries do not create visible artifacts.

Umbra detection We expect the difference image ∆I between
flash and no-flash to tell how much additional light was received
from the flash. When the images are radiometrically calibrated,

∆I histogram of ∆I detected umbra with penumbra
Figure 5: Shadow detection

∆I is exactly the light received from the flash. However, shadows
do not always correspond to ∆I = 0 because of indirect lighting.
While shadow pixels always correspond to the lowest values of ∆I,
the exact cutoff is scene-dependent.

We use histogram analysis to compute a threshold t∆I that deter-
mines umbra pixels. Shadows correspond to a well-marked mode
in the histogram of ∆I. While the additional light received by parts
of the scene lit by the flash varies with albedo, distance and normal,
the parts in shadow are only indirectly illuminated and receive a
more uniform and very low amount of light.

We compute the histogram of pixels ∆I. We use 128 bins and
smooth it with a Gaussian blur of variance two bins. We start with a
coarse threshold of 0.2 and discard all pixels where ∆I is above this
value. We then use the first local minimum of the histogram before
0.2 as our threshold for shadows detection (Fig. 5). This success-
fully detects pixels in the umbra. However, pixels in the penumbra
correspond to a smoother gradation and cannot be detected with our
histogram technique. This is why we use a complementary detec-
tion based on the gradient at shadow boundaries.

Penumbra detection Shadow boundaries create strong gradi-
ents in the flash image that do not correspond to gradients in the
no-flash image. We detect these pixels using two criteria: the gra-
dients difference, and connectedness to umbra pixels.

We compute the magnitude of the gradient ∇I f and ∇In f and
smooth it with a Gaussian of variance 2 pixels to remove noise.
We identify candidate penumbra pixels as pixels where the gradient
is stronger in the flash image. We then keep only pixels that are
“close” to umbra pixels, that is, such that at least one of their neigh-
bors is in umbra. In practice, we use a square neighborhood of size
1% of the photo’s diagonal. This computation can be performed
efficiently by convolving the binary umbra map with a box filter.

We also must account for shadows cast by tiny objects such as
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pieces of fur, since these might have a pure penumbra without um-
bra. We use a similar strategy and consider as shadow pixels that
have a large number of neighbors with higher gradient in the flash
image. We use a threshold of 80% on a square neighborhood of size
0.7% of the photo’s diagonal.

We have observed that the parameters concerning the penumbra
are robust with respect to the scene. The image-space size of the
penumbra does not vary much in the case of flash photography be-
cause the distance to the light is the same as the distance to the im-
age plane. The variation of penumbra size (ratio of blocker-receiver
distances) and perspective projection mostly cancel each other.

Flash detail computation Now that we have detected shad-
ows, we can refine the decoupling of the flash image. We exploit
the shadow mask to exclude shadow pixels from the bilateral filter-
ing. This results in a higher-quality detail layer for the flash image
because it is not affected by shadow variation.

Color and noise correction Color in the shadow cannot sim-
ply be corrected using white balance [DiCarlo et al. 2001] for two
reasons. First, shadow areas receive different amounts of indirect
light from the flash, which results in hybrid color cast affected by
the ambient lighting and color bleeding from objects. Second, the
no-flash image often lacks information in the blue channel due to
the yellowish lighting and poor sensitivity of sensors in the small
wavelengths. Fig. 3 illustrates the artifacts caused by a global white
balance of the shadow pixels.

In order to address these issues, we use a local color correction
that copies colors from illuminated regions in the flash image. For
example, in Fig. 3, a shadow falls on the wall, sofa frame and jacket.
For all these objects, we have pixels with the same intrinsic color in
the shadow and in the illuminated region.

Inspired by the bilateral filter, we compute the color of a shadow
pixel as a weighted average of its neighbors in the flash image I f

(with full color information). The weight depends on three terms:
a spatial Gaussian, a Gaussian on the color similarity in In f , and
a binary term that excludes pixels in shadow (Fig. 6). We perform
computation only on the color layer (see Fig. 2) in Luv. We use
σ f of 2.5% of the photo’s diagonal for the spatial Gaussian and
σg = 0.01 for the color similarity. As described by Durand and
Dorsey [2002] we use the sum of the weights k as a measure of pixel
uncertainty. We discard color correction if k is below a threshold.
In practice, we use a smooth feathering between 0.02 and 0.002 to
avoid discontinuities.

Recall that the large-scale layer of intensity is obtained from the
no-flash image and is not affected by shadows. In the shadow, we
do not use the detail layer of the flash image because it could be
affected by high-frequencies due to shadow boundary. Instead, we
copy the detail layer of the no-flash image, but we correct its noise
level. For this we scale the no-flash detail to match the variance of
the flash detail outside shadow regions.

In order to ensure continuity of the shadow correction, we use
feathering at the boundary of the detected shadow: We follow a
linear ramp and update pixels as a linear combination of the original
and shadow-corrected value. Fig. 3 and 4 show the results of our
shadow correction. It is robust to false shadow positives because it
simply copies colors from the image. If a pixel is wrongly classified
in shadow, its color and noise are preserved as long as there are
other pixels with similar color that were not classified in shadow.

4 Advanced decoupling

The wealth of information provided by the pair of images can be
further exploited to enhance results for very dark situations and
more advanced lighting transfer.

Flash photo

No-flash photo

Distance

Final weight = distance * 
color similarity * shadow mask, 

outside shadow inside shadow
outside shadow inside shadow

Shadow mask
Reconstructed colors

Color similarity in no-flash 

Figure 6: For a pixel in the flash shadow, the color layer is com-
puted as a weighted average of non-shadow colors. The weights
depend on three terms: distance, similarity in the no-flash image
and a binary shadow mask.

When the no-flash picture is too dark, the edge-preserving prop-
erty of the bilateral filter is not reliable, because noise level is in the
range of the signal level. Similar to the technique we use for color
correction, we can use the flash image as a similarity measure be-
tween pixels. We propose a cross-bilateral filter1 where we modify
Eq. 1 for the no-flash image and compute the edge-preserving term
g as a function of the flash-image values:

Jn f
s =

1
k(s) ∑

p∈Ω
f (p− s) g(I f

p − I f
s ) In f

p , (2)

This preserves edges although they are not really present in the
no-flash image. Shadow correction can however not be performed
because the shadow edges of the flash picture are transferred by the
g term. Fig. 1 exploits cross-bilateral decomposition.

The large-scale layer of the flash image can also be exploited to
drive the reconstruction. The distance falloff makes objects closer
to the camera brighter. We use this pseudo-distance to emphasize
the main object. We use a shadow-corrected version of ∆I as our
pseudo-distance. Pixels in shadow are assigned a pseudo-distance
using a bilateral-weighted average of their neighbors where simi-
larity is defined in the no-flash image. The principle is to multiply
the large scale of the no-flash image by the pseudo-distance. This
can be performed using a user-provided parameter. Pseudo-distance
was used in Fig. 8.

5 Results and discussion

Our technique takes about 50 seconds on a 866 MHz Pentium 3
for a 1280x960 image. The majority of the time is spent in the
color correction, because this bilateral filter cannot be efficiently
piecewise-linearized [Durand and Dorsey 2002] since it operates
on the three channels. Images such as Fig. 8 that do not include
shadow correction take about 10 seconds.

Fig 1, 3, 7 and 8 illustrate our results. The ambiance of the avail-
able light is preserved and the color, sharpness and detail of the
flash picture is gained. In our experience, the main cause of failure
of our technique is poor quality (not quantity) of available lighting.
For example, if the light is behind the subject, the relighting results
in an under-exposed subject. We found, however, that it is not hard
to outperform the poor lighting of the flash. It is well known that
lighting along the optical axis does not result in good tonal model-
ing. In contrast, Fig. 2 and 8 present a nice 3/4 side lighting. We

1Petschnigg et al. [2004] propose a similar approach that they call joint
bilateral filter.
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no-flash flash result

Figure 7: The flash lighting results in a flat image. In our result, light seems to be coming from the window to the right.

received conflicting feedback on Fig. 7, which shows that image
quality is a subjective question. In this image, the light is coming
from the 3/4 back, which is an unusual lighting for a photograph.
Some viewers appreciate the strong sense of light it provides, while
others object to the lack of tonal modeling.

Another cause of failure is overexposure of the flash, leading to a
flat detail layer. In this situation, the detail information is neither in
the no-flash (due to noise) nor in the flash photo (due to saturation).

Shadow detection works best when the depth range is limited.
Distant objects do not receive light from the flash and are detected
in shadow. While this is technically correct, this kind of shadow due
to falloff does not necessitate the same treatment as cast shadow.
Fortunately, our color correction is robust to false positives and de-
grades to identity in these cases (although transition areas could po-
tentially create problems). Similarly, black objects can be detected
as shadows, but this does not affect quality since they are black in
the two images and remain black in the output. Light flares can
cause artifacts by brightening shadow pixels. The method by Ward
[2004] could alleviate this problem.

We have used our algorithms with images from a variety of
cameras including a Sony Mavica MVC-CD400 (Fig. 1), a Nikon
Coolpix 4500 (all other images), a Nikon D1 and a Kodak DC4800
(not shown in the paper). The choice of the camera was usually
dictated by availability at the time of the shot. The specifications
that affected our approach are the noise level, the flexibility of con-
trol, the accuracy of flash white balance, and compression quality.
For example, the Kodak DC4800 exhibited strong JPEG artifacts
for dark images, which required the use of the cross-bilateral filter.

The need for the cross-bilateral filter was primarily driven by the
SNR in the no-flash picture. The Kodak DC4800 has higher noise
levels because it is old. Despite its age, the size of its photosites
allows the Nikon D1 to take images in dark conditions. In addition,
the use of the RAW format with 12 bits/channel allows for higher
precision in the flash image (the lower bits of the no-flash image are
dominated by noise). However, with the sensitivity at 1600 equiva-
lent ISO, structured noise makes cross-bilateral filtering necessary.

6 Conclusions and future work

We have presented a method that improves the lighting and am-
biance of flash photography by combining a picture taken with
the flash and one using the available lighting. Using a feature-
preserving filter, we estimate what can be seen as intrinsic layers
of the image and use them to transfer the available illumination to
the flash picture. We detect shadows cast by the flash and correct
their color balance and noise level. Even when the no-flash picture
is extremely noisy, our method successfully transfers lighting due
to the use of the flash image to perform edge-preserving filtering.

The method could be tailored to particular cameras by fine-
tuning parameters such as σg based on a sensor-noise model. Tra-

Figure 8: The tonal modeling on the cloth and face are accurately
transferred from the available lighting. The main subject is more
visible in the result than he was in the original image.

ditional red-eye removal could benefit from the additional infor-
mation provided by the pair of images. Texture synthesis and in-
painting could be used to further improve shadow correction. Ide-
ally, we want to alleviate the disturbance of the flash and we are
considering the use of infrared illumination. This is however chal-
lenging because it requires different sensors and these wavelengths
provide limited resolution and color information.

The difference of the flash and no-flash images contains much
information about the 3D scene. Although a fundamental ambi-
guity remains between albedo, distance and normal direction, this
additional information could greatly expand the range and power of
picture enhancement such as tone mapping, super-resolution, photo
editing, and image based-modeling.
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Appendix: Intensity-Color decoupling Traditional ap-
proaches rely on linear weighted combinations of R, G, and B for
intensity estimation. While these formulae are valid from a color-
theory point of view, they can be improved for illumination-albedo
decoupling. Under the same illumination, a linear intensity compu-
tation results in lower values for primary-color albedo (in particular
blue) than for white objects. As a result, the intensity transfer might
overcompensate as shown in Fig. 9(left) where the red fur becomes
too bright. To alleviate this, we use the channels themselves as
weights in the linear combination:
I = R

R+G+B R+ G
R+G+B G+ B

R+G+B B.

In practice, we use the channels of the flash image as weight for
both pictures to ensure consistency between the two decoupling op-
erations. The formula can also be used with tone mapping operators
for higher color fidelity.

Figure 9: The computation of intensity from RGB can greatly affect
the final image. Left: with linear weights, the red pixels of the fur
become too bright. Right: using our non-linear formula.
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Digital Photography with Flash and No-Flash Image Pairs 
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Figure 1: This candlelit setting from the wine cave of a castle is difficult to photograph due to its low light nature. A flash image captures the high-frequency 
texture and detail, but changes the overall scene appearance to cold and gray. The no-flash image captures the overall appearance of the warm candlelight, 
but is very noisy. We use the detail information from the flash image to both reduce noise in the no-flash image and sharpen its detail. Note the smooth 
appearance of the brown leather sofa and crisp detail of the bottles. For full-sized images, please see the supplemental DVD or the project website 
http://research.microsoft.com/projects/FlashNoFlash. 
 

Abstract 
Digital photography has made it possible to quickly and easily 
take a pair of images of low-light environments: one with flash to 
capture detail and one without flash to capture ambient illumina-
tion. We present a variety of applications that analyze and 
combine the strengths of such flash/no-flash image pairs. Our 
applications include denoising and detail transfer (to merge the 
ambient qualities of the no-flash image with the high-frequency 
flash detail), white-balancing (to change the color tone of the 
ambient image), continuous flash (to interactively adjust flash 
intensity), and red-eye removal (to repair artifacts in the flash 
image). We demonstrate how these applications can synthesize 
new images that are of higher quality than either of the originals.  

Keywords: Noise removal, detail transfer, sharpening, image 
fusion, image processing, bilateral filtering, white balancing, red-
eye removal, flash photography. 

1  Introduction 
An important goal of photography is to capture and reproduce the 
visual richness of a real environment. Lighting is an integral 
aspect of this visual richness and often sets the mood or atmos-
phere in the photograph. The subtlest nuances are often found in 
low-light conditions. For example, the dim, orange hue of a 
candlelit restaurant can evoke an intimate mood, while the pale 
blue cast of moonlight can evoke a cool atmosphere of mystery. 

When capturing the natural ambient illumination in such low-light 
environments, photographers face a dilemma. One option is to set 
a long exposure time so that the camera can collect enough light 

to produce a visible image. However, camera shake or scene 
motion during such long exposures will result in motion blur. 
Another option is to open the aperture to let in more light. How-
ever, this approach reduces depth of field and is limited by the 
size of the lens. The third option is to increase the camera’s gain, 
which is controlled by the ISO setting. However, when exposure 
times are short, the camera cannot capture enough light to accu-
rately estimate the color at each pixel, and thus visible image 
noise increases significantly.  

Flash photography was invented to circumvent these problems. 
By adding artificial light to nearby objects in the scene, cameras 
with flash can use shorter exposure times, smaller apertures, and 
less sensor gain and still capture enough light to produce rela-
tively sharp, noise-free images. Brighter images have a greater 
signal-to-noise ratio and can therefore resolve detail that would be 
hidden in the noise in an image acquired under ambient illumina-
tion. Moreover, the flash can enhance surface detail by 
illuminating surfaces with a crisp point light source. Finally, if 
one desires a white-balanced image, the known flash color greatly 
simplifies this task.  

As photographers know, however, the use of flash can also have a 
negative impact on the lighting characteristics of the environment. 
Objects near the camera are disproportionately brightened, and the 
mood evoked by ambient illumination may be destroyed. In 
addition, the flash may introduce unwanted artifacts such as red 
eye, harsh shadows, and specularities, none of which are part of 
the natural scene. Despite these drawbacks, many amateur pho-
tographers use flash in low-light environments, and consequently, 
these snapshots rarely depict the true ambient illumination of such 
scenes. 

Today, digital photography makes it fast, easy, and economical to 
take a pair of images of low-light environments: one with flash to 
capture detail and one without flash to capture ambient illumina-
tion. (We sometimes refer to the no-flash image as the ambient 
image.) In this paper, we present a variety of techniques that 
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analyze and combine features from the images in such a flash/no-
flash pair: 

Ambient image denoising: We use the relatively noise-free flash 
image to reduce noise in the no-flash image. By maintaining the 
natural lighting of the ambient image, our approach creates an 
image that is closer to the look of the real scene. 

Flash-to-ambient detail transfer: We transfer high-frequency 
detail from the flash image to the denoised ambient image, since 
this detail may not exist in the original ambient image. 

White balancing: The user may wish to simulate a whiter illumi-
nant while preserving the “feel” of the ambient image. We exploit 
the known flash color to white-balance the ambient image, rather 
than relying on traditional single-image heuristics. 
Continuous flash intensity adjustment: We provide continuous 
interpolation control between the image pair so that the user can 
interactively adjust the flash intensity. The user can even extrapo-
late beyond the original ambient and flash images. 

Red-eye correction: We perform red-eye detection by consider-
ing how the color of the pupil changes between the ambient and 
flash images. 

While many of these problems are not new, the primary contribu-
tion of our work is to show how to exploit information in the 
flash/no-flash pair to improve upon previous techniques1. One 
feature of our approach is that the manual acquisition of the 
flash/no-flash pair is relatively straightforward with current 
consumer digital cameras. We envision that the ability to capture 
such pairs will eventually move into the camera firmware, thereby 
making the acquisition process even easier and faster. 

One recurring theme of recent computer graphics research is the 
idea of taking multiple photographs of a scene and combining 
them to synthesize a new image. Examples of this approach 
include creating high dynamic range images by combining photo-
graphs taken at different exposures [Debevec and Malik 1997; 
Kang et al. 2003], creating mosaics and panoramas by combining 
photographs taken from different viewpoints [e.g. Szeliski and 
Shum 1997], and synthetically relighting images by combining 
images taken under different illumination conditions [Haeberli 
1992; Debevec et al. 2000; Masselus et al. 2002; Akers et al. 
2003; Agarwala et al. 2004]. Although our techniques involve 
only two input images, they share the similar goal of synthesizing 
a new image that is of better quality than any of the input images.  

2  Background on Camera Noise 
The intuition behind several of our algorithms is that while the 
illumination from a flash may change the appearance of the scene, 
it also increases the signal-to-noise ratio (SNR) in the flash image 
and provides a better estimate of the high-frequency detail.  

As shown in Figure 2(a), a brighter image signal contains more 
noise than a darker signal. However, the slope of the curve is less 
than one, which implies that the signal increases faster than the 
noise and so the SNR of the brighter image is better. While the 
flash does not illuminate the scene uniformly, it does significantly 
increase scene brightness (especially for objects near the camera) 
and therefore the flash image exhibits a better SNR than the 
ambient image. 

As illustrated in Figure 2(b), the improvement in SNR in a flash 
image is especially pronounced at higher frequencies. Properly 
exposed image pairs have similar intensities after passing through 
                                                                 
1 In concurrent work, Eisemann and Durand [2004] have developed 

techniques similar to ours for transferring color and detail between the 
flash/no-flash images. 

the imaging system (which may include aperture, shutter/flash 
duration, and camera gain). Therefore their log power spectra are 
roughly the same. However, the noise in the high-ISO ambient 
image is greater than in the low-ISO flash image because the gain 
amplifies the noise. Since the power spectrum of most natural 
images falls off at high frequencies, whereas that of the camera 
noise remains uniform (i.e. assuming white noise), noise domi-
nates the signal at a much lower frequency in the ambient image 
than in the flash image. 

3  Acquisition  
Procedure. We have designed our algorithms to work with 
images acquired using consumer-grade digital cameras. The main 
goal of our acquisition procedure is to ensure that the flash/no-
flash image pair capture exactly the same points in the scene. We 
fix the focal length and aperture between the two images so that 
the camera’s focus and depth-of-field remain constant. Our 
acquisition procedure is as follows: 

1. Focus on the subject, then lock the focal length and aperture. 
2. Set exposure time t∆  and ISO for a good exposure. 
3. Take the ambient image A. 
4. Turn on the flash.  
5. Adjust the exposure time t∆  and ISO to the smallest settings 

that still expose the image well. 
6. Take the flash image F. 

A rule of thumb for handheld camera operation is that exposure 
times for a single image should be under 1

30 s for a 30mm lens to 
prevent motion blur. In practice, we set the exposure times for 
both images to 1

60 s or less so that under ideal circumstances, both 
images could be shot one after another within the 1

30 s limit on 
handheld camera operation. Although rapidly switching between 
flash and non-flash mode is not currently possible on consumer-
grade cameras, we envision that this capability will eventually be 
included in camera firmware. Most of the images in this paper 
were taken with a Canon EOS Digital Rebel. 

We acquire all images in a RAW format and then convert them 
into 16-bit TIFF images. By default, the Canon conversion soft-
ware performs white balancing, gamma correction and other non-
linear tone-mapping operations to produce perceptually pleasing 
images with good overall contrast. We apply most of our algo-
rithms on these non-linear images in order to preserve their high-
quality tone-mapping characteristics in our final images. 

Registration. Image registration is not the focus of our work and 
we therefore acquired most of our pairs using a tripod setup. 
Nevertheless we recognize that registration is important for 
images taken with handheld cameras since changing the camera 
settings (i.e. turning on the flash, changing the ISO, etc.) often 
results in camera motion. For the examples shown in Figure 11 
we took the photographs without a tripod and then applied the 
registration technique of Szeliski and Shum [1997] to align them. 

 
Figure 2: (a-left) Noise vs. signal for a full-frame Kodak CCD [2001].
Since the slope is less than one, SNR increases at higher signal values. (b-
right) The digital sensor produces similar log power spectra for the flash 
and ambient images. However, the noise dominates the signal at a lower 
frequency in the high-ISO ambient image than in the low-ISO flash image. 
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While we found this technique works well, we note that flash/no-
flash images do have significant differences due to the change in 
illumination, and therefore robust techniques for registration of 
such image pairs deserve further study. 

Linearization. Some of our algorithms analyze the image differ-
ence F A−  to infer the contribution of the flash to the scene 
lighting. To make this computation meaningful, the images must 
be in the same linear space. Therefore we sometimes set our 
conversion software to generate linear TIFF images from the 
RAW data. Also, we must compensate for the exposure differ-
ences between the two images due to ISO settings and exposure 
times t∆ . If LinA′  and LinF  are the linear images output by the 
converter utility, we put them in the same space by computing: 

 Lin Lin F F

A A

ISO t
A A

ISO t
∆′=
∆

. (1) 

Note that unless we include the superscript Lin, F and A refer to 
the non-linear versions of the images. 

4  Denoising and Detail Transfer 
Our denoising and detail transfer algorithms are designed to 
enhance the ambient image using information from the flash 
image. We present these two algorithms in Sections 4.1 and 4.2. 
Both algorithms assume that the flash image is a good local 
estimator of the high frequency content in the ambient image. 
However, this assumption does not hold in shadow and specular 
regions caused by the flash, and can lead to artifacts. In Section 
4.3, we describe how to account for these artifacts. The relation-
ships between the three algorithms are depicted in Figure 3. 

4.1 Denoising 
Reducing noise in photographic images has been a long-standing 
problem in image processing and computer vision. One common 
solution is to apply an edge-preserving smoothing filter to the 
image such as anisotropic diffusion [Perona and Malik 1990] or 
bilateral filtering [Tomasi and Manduchi 1998]. The bilateral 
filter is a fast, non-iterative technique, and has been applied to a 
variety of problems beyond image denoising, including tone-
mapping [Durand and Dorsey 2002; Choudhury and Tumblin 
2003], separating illumination from texture [Oh et al. 2001] and 
mesh smoothing [Fleishman et al. 2003; Jones et al. 2003].  

Our ambient image denoising technique also builds on the bilat-
eral filter. We begin with a summary of Tomasi and Manduchi’s 
basic bilateral filter and then show how to extend their approach 
to also consider a flash image when denoising an ambient image.  

Bilateral filter. The bilateral filter is designed to average together 
pixels that are spatially near one another and have similar inten-
sity values. It combines a classic low-pass filter with an edge-
stopping function that attenuates the filter kernel weights when 
the intensity difference between pixels is large. In the notation of 
Durand and Dorsey [2002], the bilateral filter computes the value 
of pixel p for ambient image A as:  

 
1

( ) ( )
( )

Base
p d r p p p

p

A g p p g A A A
k p ′ ′

′∈Ω

′= − −∑ , (2) 

where ( )k p  is a normalization term: 

 ( ) ( ) ( )d r p p
p

k p g p p g A A ′
′∈Ω

′= − −∑ . (3) 

The function dg  sets the weight in the spatial domain based on 
the distance between the pixels, while the edge-stopping function 

rg  sets the weight on the range based on intensity differences. 
Typically, both functions are Gaussians with widths controlled by 
the standard deviation parameters dσ  and rσ  respectively.  

We apply the bilateral filter to each RGB color channel separately 
with the same standard deviation parameters for all three chan-
nels. The challenge is to set dσ  and rσ  so that the noise is 
averaged away but detail is preserved. In practice, for 6 megapixel 
images, we set dσ  to cover a pixel neighborhood of between 24 
and 48 pixels, and then experimentally adjust rσ  so that it is just 
above the threshold necessary to smooth the noise. For images 
with pixel values normalized to [0.0, 1.0] we usually set  rσ  to lie 
between 0.05 and 0.1, or 5 to 10% of the total range. However, as 
shown in Figure 4(b), even after carefully adjusting the parame-
ters, the basic bilateral filter tends to either over-blur (lose detail) 
or under-blur (fail to denoise) the image in some regions.  

Joint bilateral filter. We observed in Section 2 that the flash 
image contains a much better estimate of the true high-frequency 
information than the ambient image. Based on this observation, 
we modify the basic bilateral filter to compute the edge-stopping 
function rg  using  the flash image F  instead of A . We call this 
technique the joint bilateral filter2:  

 
1

( ) ( )
( )

NR
p d r p p p

p

A g p p g F F A
k p ′ ′

′∈Ω

′= − −∑ , (4) 

where ( )k p  is modified similarly. Here NRA  is the noise-reduced 
version of A . We set dσ  just as we did for the basic bilateral 
filter. Under the assumption that F  has little noise, we can set 

rσ  to be very small and still ensure that the edge-stopping func-
tion ( )r p pg F F ′−  will choose the proper weights for nearby 
pixels and therefore will not over-blur or under-blur the ambient 
image. In practice, we have found that rσ  can be set to 0.1% of 
the total range of color values. Unlike basic bilateral filtering, we 
fix rσ  for all images.  

The joint bilateral filter relies on the flash image as an estimator 
of the ambient image. Therefore it can fail in flash shadows and 
specularities because they only appear in the flash image. At the 
edges of such regions, the joint bilateral filter may under-blur the 
ambient image since it will down-weight pixels where the filter 
straddles these edges. Similarly, inside these regions, it may over-
blur the ambient image.  

We solve this problem by first detecting flash shadows and 
specular regions as described in Section 4.3 and then falling back 
to basic bilateral filtering within these regions. Given the mask M 

                                                                 
2 Eisemann and Durand [2004] call this the cross bilateral filter. 

Figure 3: Overview of our algorithms for denoising, detail transfer, and 
flash artifact detection. 
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produced by our detection algorithm, our improved denoising 
algorithm becomes:   

 ( )1NR NR BaseA M A MA′ = − + . (5) 

Results & Discussion. The results of denoising with the joint 
bilateral filter are shown in Figure 4(c). The difference image with 
the basic bilateral filter, Figure 4(d), reveals that the joint bilateral 
filter is better able to preserve detail while reducing noise.  

One limitation of both bilateral and joint bilateral filtering is that 
they are nonlinear and therefore a straightforward implementation 
requires performing the convolution in the spatial domain. This 
can be very slow for large dσ .  

Recently Durand and Dorsey [2002] used Fourier techniques to 
greatly accelerate the bilateral filter. We believe their technique is 
also applicable to the joint bilateral filter and should significantly 
speed up our denoising algorithm.  

4.2 Flash-To-Ambient Detail Transfer 
While the joint bilateral filter can reduce noise, it cannot add 
detail that may be present in the flash image. Yet, as described in 
Section 2, the higher SNR of the flash image allows it to retain 
nuances that are overwhelmed by noise in the ambient image. 
Moreover, the flash typically provides strong directional lighting 
that can reveal additional surface detail that is not visible in more 
uniform ambient lighting. The flash may also illuminate detail in 
regions that are in shadow in the ambient image.  

To transfer this detail we begin by computing a detail layer from 
the flash image as the following ratio:   

 Detail
Base

F
F

F
ε

ε
+=

+
, (6) 

where BaseF  is computed using the basic bilateral filter on F. The 
ratio is computed on each RGB channel separately and is inde-
pendent of the signal magnitude and surface reflectance. The ratio 
captures the local detail variation in F and is commonly called a 
quotient image [Shashua and Riklin-Raviv 2001] or ratio image 
[Liu et al. 2001] in computer vision. Figure 5 shows that the 
advantage of using the bilateral filter to compute BaseF rather than 
a classic low-pass Gaussian filter is that we reduce haloing. 

At low signal values, the flash image contains noise that can 
generate spurious detail. We add ε  to both the numerator and 
denominator of the ratio to reject these low signal values and 
thereby reduce such artifacts (and also avoid division by zero). In 
practice we use 0.02ε = across all our results. To transfer the 
detail, we simply multiply the noise-reduced ambient image NRA  
by the ratio DetailF . Figure 4(e-f) shows examples of a detail layer 
and detail transfer.  

Just as in joint bilateral filtering, our transfer algorithm produces a 
poor detail estimate in shadows and specular regions caused by 
the flash. Therefore, we again rely on the detection algorithm  
described in Section 4.3 to estimate a mask M identifying these 
regions and compute the final image as: 

 (1 )Final NR Detail BaseA M A F MA= − + . (7) 

With this detail transfer approach, we can control the amount of 
detail transferred by choosing appropriate settings for the bilateral 
filter parameters dσ  and rσ  used to create BaseF . As we increase 
these filter widths, we generate increasingly smoother versions of 

BaseF  and as a result capture more detail in DetailF . However, with 
excessive smoothing, the bilateral filter essentially reduces to a 
Gaussian filter and leads to haloing artifacts in the final image.  

Results & Discussion. Figures 1, 4(f), and 6–8 show several 
examples of applying detail transfer with denoising. Both the 
lamp (Figure 6) and pots (Figure 8) examples show how our detail 
transfer algorithm can add true detail from the flash image to the 
ambient image. The candlelit cave (Figure 1 and 7) is an extreme 
case for our algorithms because the ISO was originally set to 1600 
and digitally boosted up to 6400 in a post-processing step. In this 

No-Flash Flash

Detail Layer Detail Transfer

Denoised via Bilateral Filter

Denoised via Joint Bilateral Filter Difference 

(a) (b)

(c) (d)

(e) (f)  
Figure 4: (a) A close-up of a flash/no-flash image pair of a Belgian 
tapestry. The no-flash image is especially noisy in the darker regions and 
does not show the threads as well as the flash image. (b) Basic bilateral 
filtering preserves strong edges, but blurs away most of the threads. (c) 
Joint bilateral filtering smoothes the noise while also retaining more 
thread detail than the basic bilateral filter. (d) The difference image 
between the basic and joint bilateral filtered images. (e) We further 
enhance the ambient image by transferring detail from the flash image. 
We first compute a detail layer from the flash image, and then (f) combine 
the detail layer with the image denoised via the joint bilateral filter to 
produce the detail-transferred image. 

halo detail

Gaussian Bilateral

Filtered Signal

Detail Layer
Filtered/Signal

 
Figure 5: (left) A Gaussian low-pass filter blurs across all edges and will 
therefore create strong peaks and valleys in the detail image that cause 
halos. (right) The bilateral filter does not smooth across strong edges and 
thereby reduces halos, while still capturing detail.  
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case, the extreme levels of noise forced us to use relatively wide 
Gaussians for both the domain and range kernels in the joint 
bilateral filter. Thus, when transferring back the true detail from 
the flash image, we also used relatively wide Gaussians in com-
puting the detail layer. As a result, it is possible to see small halos 
around the edges of the bottles. Nevertheless, our approach is able 
to smooth away the noise while preserving detail like the gentle 
wrinkles on the sofa and the glazing on the bottles. Figure 7 
shows a comparison between a long exposure reference image of 
the wine cave and our detail transfer with denoising result.  

In most cases, our detail transfer algorithm improves the appear-
ance of the ambient image. However, it is important to note that 
the flash image may contain detail that looks unnatural when 
transferred to the ambient image. For example, if the light from 
the flash strikes a surfaces at a shallow angle, the flash image may 
pick up surface texture (i.e. wood grain, stucco, etc.) as detail. If 
this texture is not visible in the original ambient image, it may 
look odd. Similarly if the flash image washes out detail, the 
ambient image may be over-blurred. Our approach allows the user 
to control how much detail is transferred over the entire image. 
Automatically adjusting the amount of local detail transferred is 
an area for future work. 

4.3 Detecting Flash Shadows and Specularities 
Light from the flash can introduce shadows and specularities into 
the flash image. Within flash shadows, the image may be as dim 
as the ambient image and therefore suffer from noise. Similarly, 
within specular reflections, the flash image may be saturated and 
lose detail. Moreover, the boundaries of both these regions may 
form high-frequency edges that do not exist in the ambient image. 
To avoid using information from the flash image in these regions, 
we first detect the flash shadows and specularities.  

Flash Shadows. Since a point in a flash shadow is not illuminated 
by the flash, it should appear exactly as it appears in the ambient 
image. Ideally, we could linearize A and F as described in Section 
3  and then detect pixels where the luminance of the difference 
image Lin LinF A−  is zero. In practice, this approach is confounded 
by four issues: 1) surfaces that do not reflect any light (i.e. with 
zero albedo) are detected as shadows; 2) distant surfaces not 
reached by the flash are detected as shadows; 3) noise causes non-
zero values within shadows; and 4) inter-reflection of light from 
the flash causes non-zero values within the shadow.  

The first two issues do not cause a problem since the results are 
the same in both the ambient and flash images and thus whichever 
image is chosen will give the same result. To deal with noise and 
inter-reflection, we add a threshold when computing the shadow 
mask by looking for pixels in which the difference between the 
linearized flash and ambient images is small:   

 
1 when  

0 else

Lin Lin
Shad ShadF A

M
τ − ≤= 

. (8) 

No-Flash Detail Transfer 
with Denoising

Long Exposure�
Reference

Figure 7: We captured a long exposure image of the wine cave scene (3.2 
seconds at ISO 100) for comparison with our detail transfer with denoising 
result. We also computed average mean-square error  across the 16 bit R, 
G, B color channels between the no-flash image and the reference (1485.5 
MSE) and between our result and the reference (1109.8 MSE). However, 
it is well known that MSE is not a good measure of perceptual image 
differences. Visual comparison shows that although our result does not 
achieve the fidelity of the reference image, it is substantially less noisy 
than the original no-flash image. 

Orig. (top) Detail Transfer (bottom) Flash No-Flash Detail Transfer with Denoising

No-FlashNo-Flash

FlashFlash

Figure 6: An old European lamp made of hay. The flash image captures detail, but is gray and flat. The no-flash image captures the warm illumination of the 
lamp, but is noisy and lacks the fine detail of the hay. With detail transfer and denoising we maintain the warm appearance, as well as the sharp detail. 
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We have developed a program that lets users interactively adjust 
the threshold value Shadτ  and visually verify that all the flash 
shadow regions are properly captured.  

Noise can contaminate the shadow mask with small speckles, 
holes and ragged edges. We clean up the shadow mask using 
image morphological operations to erode the speckles and fill the 
holes. To produce a conservative estimate that fully covers the 
shadow region, we then dilate the mask. 

Flash Specularities. We detect specular regions caused by the 
flash using a simple physically motivated heuristic. Specular 
regions should be bright in LinF  and should therefore saturate the 
image sensor. Hence, we look for luminance values in the flash 
image that are greater than 95% of the range of sensor output 
values. We clean, fill holes, and dilate the specular mask just as 
we did for the shadow mask.  

Final Merge. We form our final mask M  by taking the union of 
the shadow and specular masks. We then blur the mask to feather 
its edges and prevent visible seams when the mask is used to 
combine regions from different images. 

Results & Discussion. The results in Figures 1 and 6–8 were 
generated using this flash artifact detection approach. Figure 8 
(top row) illustrates how the mask corrects flash shadow artifacts 
in the detail transfer algorithm. In Figure 1 we show a failure case 
of our algorithm. It does not capture the striped specular highlight 
on the center bottle and therefore this highlight is transferred as 
detail from the flash image to our final result. 

Although both our shadow and specular detection techniques are 
based on simple heuristics, we have found that they produce good 
masks for a variety of examples. More sophisticated techniques 
developed for shadow and specular detection in single images or 
stereo pairs [Lee and Bajcsy 1992; Funka-Lea and Bajcsy 1995; 
Swaminathan et al. 2002] may provide better results and could be 
adapted for the case of flash/no-flash pairs. 

5  White Balancing 
Although preserving the original ambient illumination is often 
desirable, sometimes we may want to see how the scene would 
appear under a more “white” illuminant. This process is called 
white-balancing, and has been the subject of much study [Adams 
et al. 1998]. 

When only a single ambient image is acquired, the ambient 
illumination must be estimated based on heuristics or user input. 
Digital cameras usually provide several white-balance modes for 
different environments such as sunny outdoors and fluorescent 
lighting. Most often, pictures are taken with an “auto” mode, 
wherein the camera analyzes the image and computes an image-
wide average to infer ambient color. This is, of course, only a 
heuristic, and some researchers have considered semantic analysis 
to determine color cast [Schroeder and Moser 2001]. 

A flash/no-flash image pair enables a better approach to white 
balancing. Our work is heavily inspired by that of DiCarlo et al. 
[2001], who were the first to consider using flash/no-flash pairs 
for illumination estimation. They infer ambient illumination by 
performing a discrete search over a set of 103 illuminants to find 
the one that most closely matches the observed image pair. We 
simplify this approach by formulating it as a continuous optimiza-
tion problem that is not limited by this discrete set of illuminants. 
Thus, our approach requires less setup than theirs. 

We can think of the flash as adding a point light source of known 
color to the scene. By setting the camera white-balance mode to 
“flash” (and assuming a calibrated camera), this flash color should 
appear as reference white in the acquired images. 

The difference image Lin LinF A∆ = −  corresponds to the illumina-
tion due to the flash only, which is proportional to the surface 
albedo at each pixel p. Note that the albedo estimate ∆  has 
unknown scale, because both the distance and orientation of the 
surface are unknown. Here we are assuming either that the surface 
is diffuse or that its specular color matches its diffuse color. As a 

No-FlashNo-Flash

FlashFlash

Orig. (top) Detail Transfer (bottom) Detail Transfer without Mask Shadow and Specularity Mask Detail Transfer using Mask

Flash No-Flash  Detail Transfer with Denoising
Figure 8: (top row) The flash image does not contain true detail information in shadows and specular regions. When we naively apply our denoising and 
detail transfer algorithms, these regions generate artifacts as indicated by the white arrows. To prevent these artifacts, we revert to basic bilateral filtering 
within these regions. (bottom row). The dark brown pot on the left is extremely noisy in the no-flash image. The green pot on the right is also noisy, but as 
shown in the flash image it exhibits true texture detail. Our detail transfer technique smoothes the noise while maintaining the texture. Also note that the flash 
shadow/specularity detection algorithm properly masks out the large specular highlight on the brown pot and does not transfer that detail to the final image. 
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counter-example, this is not true of plastics. Similarly, semi-
transparent surfaces would give erroneous estimates of albedo.  

Since the surface at pixel p has color pA  in the ambient image 
and the scaled albedo p∆ , we can estimate the ambient illumina-
tion at the surface with the ratio:  

 p
p

pA

∆
=C , (9) 

which is computed per color channel. Again, this estimated color 
pC  has an unknown scale, so we normalize it at each pixel p (see 

inset Figure 9). Our goal is to analyze pC  at all image pixels to 
infer the ambient illumination color c. To make this inference 
more robust, we discard pixels for which the estimate has low 
confidence. We can afford to do this since we only need to derive 
a single color from millions of pixels. Specifically, we ignore 
pixels for which either 1pA τ<  or the luminance of 2p τ∆ <  in 
any channel, since these small values make the ratio less reliable. 
We set both 1τ  and 2τ  to about 2% of the range of color values. 

Finally, we compute the ambient color estimate c for the scene as 
the mean of pC  for the non-discarded pixels. (An alternative is to 
select c as the principal component of C , obtained as the eigen-
vector of T

C C  with the largest eigenvalue, and this gives a similar 
answer.) 

Having inferred the scene ambient color c, we white-balance the 
image by scaling the color channels as: 

 
1WB

p pA A
c

= . (10) 

Again, the computation is performed per color channel.  

Results & Discussion. Figure 9 shows an example of white 
balancing an ambient image. The white balancing significantly 
changes the overall hue of the image, setting the color of the wood 
table to a yellowish gray, as it would appear in white light.  

In inferring ambient color c, one could also prune outliers and 
look for spatial relationships in the image C . In addition, the 
scene may have multiple regions with different ambient colors, 
and these could be segmented and processed independently. 

White-balancing is a challenging problem because the perception 
of “white” depends in part on the adaptation state of the viewer. 
Moreover, it is unclear when white-balance is desirable. However 
we believe that our estimation approach using the known informa-
tion from the flash can be more accurate than techniques based on 
single-image heuristics.  

6  Continuous Flash Adjustment 
When taking a flash image, the intensity of the flash can some-
times be too bright, saturating a nearby object, or it can be too 
dim, leaving mid-distance objects under-exposed. With a flash 
and non-flash image pair, we can let the user adjust the flash 
intensity after the picture has been taken. 

We have explored several ways of interpolating the ambient and 
flash images. The most effective scheme is to convert the original 
flash/no-flash pair into YCbCr space and then linearly interpolate 
them using: 

 (1 ) ( )AdjustedF A Fα α= − + . (11) 

To provide more user control, we allow extrapolation by letting 
the parameter α  go outside the normal [0,1] range. However, we 
only extrapolate the Y channel, and restrict the Cb and Cr channel 
interpolations to their extrema in the two original images, to 
prevent excessive distortion of the hue. An example is shown in 
Figure 10. 

7  Red-Eye Correction  
Red-eye is a common problem in flash photography and is due to 
light reflected by a well vascularized retina. Fully automated red-
eye removal techniques usually assume a single image as input 
and rely on a variety of heuristic and machine-learning techniques 
to localize the red eyes [Gaubatz and Ulichney 2002; Patti et al. 
1998]. Once the pupil mask has been detected, these techniques 
darken the pixels within the mask to make the images appear 
more natural.  

We have developed a red-eye removal algorithm that considers 
the change in pupil color between the ambient image (where it is 
usually very dark) and the flash image (where it may be red). We 
convert the image pair into YCbCr space to decorrelate luminance 

Original No-Flash White-BalancedEstimated ambient illumination  
Figure 9: (left) The ambient image (after denoising and detail transfer) has an orange cast to it. The insets show the estimated ambient illumination colors C
and the estimated overall scene ambience. (right) Our white-balancing algorithm shifts the colors and removes the orange coloring . 

-0.5 0.0 (No-Flash) 0.33 0.66 1.0 (Flash) 1.5
Figure 10: An example of continuous flash adjustment. We can extrapolate beyond the original flash/no-flash pair. 
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from chrominance and compute a relative redness measure as 
follows: 

 Cr CrR F A= − . (12) 

We then initially segment the image into regions where: 

 EyeR τ> . (13) 

We typically set Eyeτ  to 0.05 so that the resulting segmentation 
defines regions where the flash image is redder than the ambient 
image and therefore may form potential red eyes. The segmented 
regions also tend to include a few locations that are highly satu-
rated in the Cr channel of the flash image but are relatively dark in 
the Y channel of the ambient image. Thus, if Rµ  and Rσ  denote 
the mean and standard deviation of the redness R, we look for 
seed pixels where: 

 max[0.6, 3 ]R RR µ σ> +  and Y DarkA τ< . (14) 

We usually set Darkτ = 0.6. If no such seed pixels exist, we assume 
the image does not contain red-eye. Otherwise, we use these seed 
pixels to look up the corresponding regions in the segmentation 
and then apply geometric constraints to ensure that the regions are 
roughly the same size and elliptical. In particular, we compute the 
area of each region and discard large outliers. We then check that 
the eccentricity of the region is greater than 0.75. These regions 
then form a red-eye pupil mask. Finally to correct these red-eye 
regions we use the technique of Patti et al.[1998]. We first remove 
the highlights or “glints” in the pupil mask using our flash specu-
larity detection algorithm. We then set the color of each pixel in 
the mask to the gray value equivalent to 80% of its luminance 
value. This approach properly darkens the pupil while maintaining 
the specular highlight which is important for maintaining realism 
in the corrected output. 

Results & Discussion. Figure 11 illustrates our red-eye correction 
algorithm with two examples. The second example shows that our 
algorithm performs well even when the red-eye is subtle. In both 
examples our algorithm is able to distinguish the pupils from the 
reddish skin. Moreover, the specular highlight is preserved and 
the eye shows no unnatural discoloration. Both of these examples 
were automatically aligned using the approach of Szeliski and 
Shum [1997]. Since color noise could invalidate our chromaticity 
comparison, we assume a relatively noise free ambient image, like 
the ones generated by our denoising algorithm. 

8  Future Work and Conclusions 
While we have developed a variety of applications for flash/no-
flash image pairs, we believe there remain many directions for 
future work.  

In some cases, the look of the flash image may be preferable to 
the ambient image. However, the flash shadows and specularities 
may be detracting. While we have developed algorithms for 
detecting these regions, we would like to investigate techniques 
for removing them from the flash image. 

Flash shadows often appear at depth discontinuities between 
surfaces in the scene. Using multiple flash photographs it may be 
possible to segment foreground from background. Raskar et al. 
[2003] have recently explored this type of approach to generate 
non-photorealistic renderings.  

Motion blur is a common problem for long-exposure images. It 
may be possible to extend our detail transfer technique to de-blur 
such images. Recent work by Jia et al. [2004] is beginning to 
explore this idea. 

No-Flash Red-Eye Corrected Flash

No-Flash Flash

Closeup with Faint Red-Eye

Red-Eye Corrected  
Figure 11: Examples of red-eye correction using our approach. Although 
the red eye is subtle in the second example, our algorithm is still able to 
correct the problem. We used a Nikon CoolPix 995 to acquire these 
images. 

While our approach is designed for consumer-grade cameras, we 
have not yet considered the joint optimization of our algorithms 
and the camera hardware design. For example, different illumi-
nants or illuminant locations may allow the photographer to 
gather more information about the scene. 

An exciting possibility is to use an infrared flash. While infrared 
illumination yields incomplete color information, it does provide 
high-frequency detail, and does so in a less intrusive way than a 
visible flash. 

We have demonstrated a set of applications that combine the 
strengths of flash and no-flash photographs to synthesize new 
images that are of better quality than either of the originals. The  
acquisition procedure is straightforward. We therefore believe that 
flash/no-flash image pairs can contribute to the palette of image 
enhancement options available to digital photographers. We hope 
that these techniques will be even more useful as cameras start to 
capture multiple images every time a photographer takes a pic-
ture. 
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Abstract 
We enhance underexposed, low dynamic range videos by 
adaptively and independently varying the exposure at each 
photoreceptor in a post-process. This virtual exposure is a 
dynamic function of both the spatial neighborhood and temporal 
history at each pixel. Temporal integration enables us to expand 
the image’s dynamic range while simultaneously reducing noise. 
Our non-linear exposure variation and denoising filters smoothly 
transition from temporal to spatial for moving scene elements. 
Our virtual exposure framework also supports temporally 
coherent per frame tone mapping. Our system outputs restored 
video sequences with significantly reduced noise, increased 
exposure time of dark pixels, intact motion, and improved details. 
 
CR Categories: I.4.3: Image Processing and Computer Vision – 
enhancement, filtering. I.3.3: Computer Graphics – picture/image 
generation, display algorithms. 
 
Keywords:  Digital video, Noise reduction, Low dynamic range, 
Exposure, Bilateral filter, Restoration, Tone mapping. 

1 Introduction 
 Alternatively, HDR images can be assembled by additively 
combining multiple uniformly exposed digital images [Liu et al 
03] [Jostschulte et al 98]. This approach is particularly compatible 
with digital video, but it has been largely overlooked since it 
requires processing O(N) source images compared to the 
O(log(N)) of variable exposure methods. Nevertheless, the 
combination of multiple uniformly exposed images affords certain 
advantages, including noise reduction. Moreover, if one varies the 
number of uniformly exposed images combined on a pixel-by-
pixel basis, it becomes possible to adjust each pixel’s exposure 
independently, allowing for direct tone mapping without explicit 
construction of an intermediate HDR image. Local exposure 
control also provides a tool for handling dynamic scenes. This 
approach constitutes our Virtual Exposure Camera (VEC) 
conceptual model.   

  

 
Figure 1: A frame from a video processed using virtual exposures.  Upper 
Left: original frame; Upper Right: histogram stretched version; Bottom Left: 
red = number of temporal pixels integrated, green = number of spatial pixels 
integrated; Bottom Right: our result after filtering and tone mapping. 

High dynamic range (HDR) imaging, processing, and display 
have recently received considerable attention. An implicit 
assumption of most HDR systems is a sizeable signal-to-noise 
ratio achieved via long exposures in low-light areas. Generally, 
multiple low dynamic range (LDR) images with different 
exposure settings are combined to generate a single HDR image, 
which implies a static scene. However, people have long been 
accidentally capturing poorly exposed video with camcorders and 
motion-picture cameras (countless home videos of school plays 
and dance recitals lay testament to this phenomenon).  We address 
the problem of enhancing such videos. Aside from the noise 
characteristics of dark videos, there is a surprising commonality 
between HDR and LDR imaging. In this paper, we develop 
methods for enhancing LDR video to simulate the characteristics 
of individually tone-mapped HDR video frames, for applications 
in filmmaking, surveillance, forensics, and high-speed imaging.  Our model of processing brings out hidden details that are 

barely noticeable in video frames due to underexposure and noise. 
It also synthesizes perceptually plausible and temporally 
consistent renditions of each video frame. Our process begins by 
estimating each pixel’s exposure setting based on a spatially 
uniform tone mapping of each frame. It then attempts to recreate a 
corresponding gain ratio at each pixel by combining temporal 
samples of static scene elements and spatial samples of dynamic 
elements. This effectively denoises and tone maps the video.  

Humans simultaneously perceive regions with high luminous 
intensities alongside intensities several orders of magnitude lower 
by spatially adapting the visual field’s local sensitivity. Modern 
digital still cameras, however, rely on a single exposure time 
across the entire frame and photosites with uniform sensitivities 
necessitating that multiple images be taken at varying exposures 
to capture the full nuance of HDR scenes. This is problematic for 
dynamic scenes, where it is seldom possible to capture multiple 
exposures. Furthermore, HDR construction assumes an abundance 
of light and/or exposure intervals long enough to cancel the 
random noise fluctuations characteristic of image sensors. Once 
acquired, the problem becomes the accurate depiction of HDR 
results on LDR displays through tone mapping. 

 Our virtual exposure method significantly enhances low 
dynamic range and noisy videos, making previously unwatchable 
material acceptable.  The quantity of noise present directly affects 
the quality of the result, but so long as the noise is zero-mean, our 
method brings out details that are barely visible in the original. 
 
The primary contributions of this work are:  
• A virtual exposure camera model for enhancing LDR videos 
• The Adaptive Spatio-Temporal Accumulation (ASTA) filter 
 for reducing noise in LDR videos 
• A tone mapping approach to enhance LDR videos 
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 Other video filtering approaches have appeared that use 
temporal filtering. Dubois and Sabri [84] performed nonlinear 
temporal noise filtering assisted by displacement estimation. Each 
pixel is combined temporally using a recursive low-pass temporal 
filter weighted by the reliability of the displacement estimate. 
This method requires well-exposed, easy-to-track video to 
correctly filter. Our method adapts from temporal to spatial 
filtering to be robust to tracking inaccuracies.  Jostschulte et al 
[98] presented a spatio-temporal shot noise filter that first 
spatially and then temporally filters video while preserving edges 
that match a template set. A motion-sensing algorithm is used to 
vary the amount of temporal filtering.  We prefer to only use 
temporal filtering when possible and adapt the mix of temporal 
and spatial filtering based on a tone-mapping objective and local 
motion characteristics.  

2 Related Work 
Enhancing low-dynamic range images has much in common with 
HDR acquisition, processing, and display. HDR representations 
have long been recognized as essential for accurately modeling 
light transport [Ward 91]. More recently, Debevec and Malik [97] 
developed accurate methods for assembling HDR images from a 
series of still photographs with increasingly long exposure times.   
 The problem of mapping an HDR image for display on 
devices with limited dynamic range was formalized by 
Tumblin and Rushmier [93], and has led to a variety of spatially 
uniform [Drago et al 03] and spatially varying 
[Tumblin and Turk 99] [Durand and Dorsey 02] [Fattal et al 02] 
tone mapping approaches.  A variety of methods have been 
proposed to tone map HDR images so that the maximum amount 
of information is visible on a monitor.  Retinex theory, such as in 
the multiscale Retinex [Jobson et al 97], suggests that a Gaussian-
like kernel can be convolved at each point in the image and 
subtracted from the original image in log space, providing for a 
more “viewable” version of a still image.  The advantage of the 
Retinex approach is that it is non-iterative, but it can generate 
unwanted edge blurring artifacts.  Durand and Dorsey [02] built a 
similar system, but used an edge preserving bilateral filter to 
maintain sharp edges. Pattanaik et al [00] presented an approach 
that mimics the time dependent local adaptation of the human 
visual system.  They also discussed temporal coherence to avoid 
introducing frame-by-frame tone mapping “flicker”. In gradient 
domain HDR compression [Fattal et al 02], the gradient of an 
image is attenuated and then reintegrated.  They also described a 
modification for improving images that already use a display’s 
full dynamic range.  Raskar et al [04] also used gradient domain 
methods, but to fuse day and night images together— adding 
daytime context to nighttime footage. 

 Recently, Eisemann and Durand [04] and Petschnigg et al 
[04] have developed methods to remove noise and improve the 
dynamic range of underexposed images by incorporating features 
derived from properly exposed “flash images”. The extent of 
noise removal depends on how well exposed a given region is in 
the flash image. Furthermore, the underlying luminance model 
used in the processing is not HDR, either explicitly (as in 
previous tone-mapping systems) or implicitly (as in our case).  It 
is also unclear how to extend these methods to video sequences. 
The goal of our virtual exposure approach is similar to these 
methods, but we incorporate temporal information instead of flash 
image features to improve the exposure. Thus, the illuminations 
of our enhancements are consistent with the original source. 
 Researchers have also constructed actual high dynamic range 
video capture systems. Kang et al [03] built a system based on a 
camera that could sequence through different exposure settings.  
Once the images were registered using optical flow, it was 
possible to combine exposures to improve the dynamic range. The 
small number of frames combined suggests that a high signal-to-
noise ratio (SNR) was assumed, and therefore, it would only be 
useful for well-lit scenes. Nayar and Branzoi [03] presented a 
system whereby a computer controlled LCD panel was placed in 
front of the CCD. The per-pixel transparency was varied to 
modulate the exposure of image regions based on the previous 
frame’s luminance.  They also discussed a local and global tone 
mapping approach that addresses temporal coherence issues. 
Using LCDs implies attenuation of the incoming light, thus 
further complicating low-light imaging. Nayar and Branzoi [04] 
later suggested a second variant using a DLP micromirror array to 
modulate the exposure, via time-division multiplexing (like a 
camera shutter), throughout the image. In theory, such systems 
could provide continuous exposure control at each pixel compared 
to our discretized exposure settings.  However, they require 
additional hardware and are strictly causal; whereas our virtual 
exposure approach allows the incorporation of future information 
into virtual exposure decisions, assuming a constant latency. 

 The idea of using multiple temporally adjacent frames to 
enhance knowledge about a pixel’s true or desired value was 
considered in Cohen et al [03].  Multiple images were registered 
and then each pixel of the output image was computed as a 
function of its temporal neighbors.  HDR compression using this 
algorithm was also described.  Sand and Teller [04] discussed a 
video matching method for aligning slightly different video 
sources.  Specifically, it contains a robust system for frame-to-
frame alignment. We handle moving cameras by warping spatio-
temporal volumes as described by Bennett and McMillan [03]. 
 There is a long history of noise filtering methods throughout 
the signal processing literature. We are most interested in edge-
preserving filters from the anisotropic diffusion and bilateral filter 
families.  Anisotropic diffusion of images [Perona and Malik 90] 
provides an iterative filtering method that adapts to the image’s 
gradient.  Bilateral filtering [Tomasi and Manduchi 98] provides a 
single-step noise removal process that shares many visual and 
mathematical qualities with anisotropic diffusion [Barash 02].  
However, both of these methods are designed for single images 
and not for videos.  The Trilateral filter [Choudhury and Tumblin 
03] builds on the bilateral filter model by biasing its kernel away 
from edges and dynamically choosing the kernel’s size in an 
attempt to model signals as piecewise linear rather than piecewise 
constant functions.  Other modifications have been proposed to 
improve the standard bilateral filter’s ability to handle noise 
[Boomgaard and Weijer 02] [Francis and Jager 03].  We combine 
the attributes of median filters with the bilateral filter. A “bilateral 
median” filter was described by Francis and Jager [03], but it used 
a weighted median for summation purposes, unlike ours that uses 
it to establish a dissimilarity value. Spatio-Temporal Anisotropic 
Diffusion [Lee et al 98] used a three dimensional kernel to 
remove video noise, treating temporal and spatial dimensions 
similarly. Instead, we adapt from temporal to spatial filtering. 

 Acosta-Serafini et al [04] described an HDR camera that 
selectively resets a pixel based on a prediction of when it will 
saturate. The reset interval and the digitized pixel level combine 
to form a floating-point value. They primarily focused on high-
speed, HDR sensing and do not specifically address low-light 
situations. Liu et al [03] combined high-speed samples to reduce 
noise and improve dynamic range. Their approach is similar, but 
much lower-level than ours. It depends on specific imaging device 
features such as high-speed non-destructive reads.  It also relies 
mostly on linear filters, and uses only single pixel areas to detect 
motion. In contrast, our method uses bilateral filtering, considers 
a larger context for motion detection, and targets a tone-mapped 
objective. Bidermann et al [03] described an HDR high-speed 
CMOS imager platform with per-pixel ADCs and storage, which 
could use the Liu et al [03] algorithm and targets well-lit scenes. 
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Figure 2: The VEC model for processing LDR video.  Since no single frame 
contains sufficient information for noise reduction and tone mapping, 
processing is done with knowledge of recent frames and how tone mapping 
was applied.  Rudimentary tone mapping is performed before filtering to 
guide the adaptive filter’s settings. 

 We process a spatio-temporal volume implemented as a FIFO 
queue (Fig. 2), where filtering occurs in the current frame but 
with knowledge of the frames that come before or after it (in a 
real-time, low latency system, the future might not be known). 
Therefore, the processing of a pixel can benefit from information 
in adjacent frames while also ensuring that tone mapping is 
temporally consistent. Pixels are indexed using (x,y,t) notation, 
with t being the frame number. 
 When integrating the contributions of multiple pixels together 
to simulate a longer exposure time,  pixels that come before and 
after temporally can often be used. However, since some frames 
capture individual pixels with varying noise contributions, it is 
advantageous to exclude the noisiest pixels from the integration. 
Similarly, pixels that change due to object motion should not be 
included, to avoid blurring and “ghosting” artifacts. 
 Given LDR video, we apply a tone mapping algorithm 
targeted at improving poorly exposed areas and handling noise. 
Such a tone mapper is discussed in Section 5. 3 The Virtual Exposure Camera Model  Prior to filtering, we estimate a gain factor for each pixel that 
scales its original luminance to achieve the pixel’s final filtered 
output level.  Because we cannot know this before filtering, we 
choose to estimate the filtered and tone mapped luminance by 
applying a spatially uniform tone mapping function m(x,y) to a 
Gaussian blurred version of the image. This gain factor is used by 
our non-linear filter, described in section 4, to determine how 
many pixels are additively combined thus establishing a per-pixel 
exposure time.  We call this gain value l and we use it to 
establish our adaptive filter’s support. 

The Virtual Exposure Camera (VEC) is our conceptual model for 
analyzing and enhancing low dynamic range (LDR) video. Many 
common applications result in LDR videos. For instance, filming 
theatrical lighting is difficult because background scenery is 
seldom well exposed in comparison to the spotlights placed on the 
actors. LDR video also results from high speed imaging, where 
fast shutter speeds are desirable.  Small aperture video, to increase 
depth-of-field, can also lead to LDR video. Poor lighting 
scenarios, such as is common in surveillance applications, also 
lead to underexposed videos. 

4 The ASTA Filter 3.1 LDR Video Noise Characteristics  
Our virtual exposure filter seeks out similar pixels to integrate. 
Two major factors affect how ASTA filters: how many pixels it 
wants to combine and if these pixels are in an area of the image 
with motion. ASTA adapts by transitioning between temporal-
only and spatial-only bilateral-inspired filtering while choosing 
parameters based on local illumination. 

The LDR videos we are interested in processing have a small 
signal-to-noise ratio and low precision. Our system also enhances 
videos with “peaky” histograms. Such scenes are composed of 
elements that span a significant dynamic range, but the 
combination of exposure settings and quantization leads to low 
precision renditions of all elements. 

There are a variety of noise sources in CCD and CMOS 
sensors that confound imaging in low-light situations, such as 
readout, photon shot, dark current, and fixed pattern noise in 
addition to photon response non-uniformities [Reibel et al 03]. 
We assume that dark current noise and fixed pattern noise can be 
removed via subtraction of a reference dark image at the same 
temperature and exposure setting. Photon shot and readout noise 
are our primary problems, but we assume they are zero-mean, so 
if we can get multiple samples of the same pixel from temporally 
adjacent frames, we can average out the error.  A significant 
problem for dealing with dark areas captured with CCDs is that 
the amplitude of sensor read noise is independent of exposure 
whereas photon shot noise varies linearly with exposure time. 
Read noise is more significant than shot noise at very dark pixels. 
Thus, for the darkest pixels, the SNR is comparatively smaller. 

4.1 The Spatial Bilateral Filter 
ASTA is based on the edge-preserving bilateral filter 
[Tomasi and Manduchi 98]. The bilateral filter maintains edges 
by performing a Gaussian convolution but attenuates the 
contributions of pixels by how different their intensities are from 
the intensity at the center of the kernel. Although simple 
subtractive difference is often used to measure this difference of 
intensities, we generalize this notion to include non-photometric 
differences which we treat as dissimilarity values. A dissimilarity 
value is any relationship that satisfies the following properties: 
D(x,x) = 0 and D(x,y) = D(y,x).  A dissimilarity is metric if the 
triangle inequality holds:  D(x,y) + D(y,z) ≥ D(x,z).  
The spatial bilateral filter (for a pixel s), with a subtractive 
dissimilarity value D(p,s), is shown in Equations 1 and 2: 

 Computing the mean of n samples will improve the precision 
of the luminance readings by a n  factor. These assumptions are 
not true for compressed video footage, where quantization is non-
uniform across frequencies. We assume a linear camera response, 
which is true for raw CCD samples, but not for the hidden post-
processing found in many camcorders. 
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Our VEC model identifies poorly exposed regions of video and 
increases precision by simulating longer exposure times. This 
simulation involves temporal integration of the contributions of as 
many pixel values as would have been sampled over the interval 
of the longer exposure. 
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 Three variables control the bilateral filter’s operation. First, σh 
controls how quickly the spatial Gaussian falls off. The second, 
σi, controls the Gaussian dissimilarity weighting. It attenuates the 
contributions of neighboring pixels that are that are too different 
and is typically chosen based on an estimate of the signal’s SNR. 
Finally, k determines kernel size. 
 The bilateral filter does a good job of smoothing out small 
imperfections while preserving edges, but it is incapable of 
removing shot noise from a signal (Fig. 3). When the filter kernel 
is centered on an outlier pixel, the intensity Gaussian will exclude 
all other values, leaving it unchanged, which accentuates it 
compared to the otherwise cleaned signal.  

4.2 Bilateral Filtering in Time  
In the case of a fixed camera, the best estimate of a pixel’s true 
value is predicted from those pixels at the same location in 
different frames. In the absence of motion, a simple average of all 
pixels at each (x,y) coordinate through time gives an optimal 
answer, assuming zero-mean noise. However, averaging in the 
presence of motion creates “ghosting” artifacts. Our solution is to 
consider changes in a pixel’s value due to motion as “temporal 
edges”. A bilateral filter maintains edges while providing noise 
reduction in areas with small amplitude noise. Thus, we employ a 
temporal 1D-bilateral filter as a primary component in our noise 
reduction process.   
 A difficulty of applying a temporal bilateral filter is choosing 
an appropriate value for σi (the dissimilarity falloff) that 
simultaneously removes noise while preserving motion based 
entirely on differences of pixel luminance. If σi is too large, 
“ghosting” still results, and if σi is too small, noise will remain. 
Such a simple σi does often not exist for noisy video. 

An alternative is to filter video with a volumetric bilateral 
kernel that operates in spatio-temporal volumes, much like how 
anisotropic diffusion was extended to 3D by Lee et al [98]. 
However, this symmetric approach does not take into account the 
difference in sampling density between space and time in a 
spatio-temporal volume. 

4.3 Alternate Dissimilarity Values 
As a solution to the typical bilateral filter’s inability to remove 
shot noise, we introduce an alternate dissimilarity value D(p,s) in 
the bilateral filter. Instead of using the simple intensity difference, 
we substitute an arbitrary function that returns a value for each 
pair of pixels in a video or image that may or may not be solely 
intensity-based. 
 For example, the dissimilarity value could be the difference 
between p and some statistic of the local spatial neighborhood 
around s, making the filter more robust to shot noise. We use a 
median-centered bilateral filter that uses a small kernel median 
filter centered at s to improve quality in noisy image areas. The 
problem of choosing the intensity at the bilateral filter’s center as 

the sole reference was discussed by Boomgaard and Weijer [02], 
but no suggestion of an alternative statistic was given. A wide 
variety of statistics could be applied to choose the s pixel’s 
intensity, such as local minima, local maxima, or even other 
bilateral filters. Even measures not directly associated with 
luminance could be used. 
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Figure 3: Left: The bilateral filter recovers the signal (blue) from the noisy 
input (red). Right: The bilateral filter is unable to attenuate the shot noise 
because no other pixels fall within the intensity dissimilarity Gaussian. 

4.4 Spatial Neighborhood Dissimilarity Value 
We use a different dissimilarity value in our temporal bilateral 
filter. Specifically, the method is to compare the local spatial 
neighborhoods centered at the same pixel in different frames. 
Equation 3 shows our normalized Gaussian weighted dissimilarity 
for an n × n neighborhood and a temporal edge tolerance of σe. 
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The difference between two pixels’ intensities does not 
provide enough information to judge if they are significantly 
different. However, by comparing spatial neighborhoods, a 
judgment can be reached. Thus if only a small percentage of 
pixels change, we assume it to be noise and integrate into the 
filter. If many pixels change, we assume it to be a more 
significant event, and no blending occurs. For clarification, 
despite the fact we are comparing neighborhoods, it is only the 
pixels at the center of each neighborhood that will ultimately be 
blended together. The neighborhood size, often between 3 and 5, 
can be varied depending on noise characteristics, as can σe 
(usually between 2 and 6). Our dissimilarity value is inspired by 
correspondence measures frequently used in stereo imaging.  We 
have used Sum of Absolute Differences (SAD) and Sum of 
Squared Differences (SSD). We implemented both versions and 
got similar results, although SSD occasionally created artificially 
sharp edges.  Figure 4 illustrates our SAD version. 

  

 
Figure 4: Illustration of our spatial neighborhood dissimilarity value used in 
temporal filtering. The original frame is shown in the upper left.  Each (x,y) 
for a pair of nearby frames are shown in the upper right.  Two metronome 
arms are seen because the dissimilarity value is based on absolute value.  
The bottom image is the same frame processed using ASTA and our tone 
mapper. 
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4.5 Implementing ASTA 
The VEC model determines how many pixels should be combined 
to achieve our tone map brightness target. If only temporal 
bilateral filtering with the spatial neighborhood dissimilarity value 
is used, and it is in an area of high motion, only the center pixel of 
the kernel will make a sizable contribution to the result. In this 
case, it would not integrate enough pixels to achieve the desired 
gain factor. To overcome this problem we instead use an Adaptive 
Spatio-Temporal Accumulation filter (ASTA) that adapts to its 
surroundings to find enough pixels in the presence of motion. For 
a static pixel, it reduces to a temporal bilateral filter with the 
spatial neighborhood difference dissimilarity value. However, if it 
does not find enough similar pixels to achieve the desired 
exposure based on the size of the normalizing factor in the 
denominator of Equation 1, it transitions to a spatial-only median-
centered bilateral filter, as shown in Figure 5.  Like Yee et al [01], 
we also exploit the psychophysical phenomenon that in areas of 
motion, the human visual system’s ability to perceive high 
frequencies is reduced.  Thus, in areas with insufficient temporal 
information due to motion, we can transition to spatial filtering. 

Temporal bilateral filters are run on the image’s luminance 
and mapped to each channel, but only spatial filtering is done on 
each color channel. Furthermore, spatial filtering is done in the 
log domain, whereas temporal filtering is not. 

 
Figure 5: Illustration of the temporal-only and spatial-only nature of ASTA.  
The temporally filtered red pixels are preferred to be integrated into the filter, 
but if not enough are similar to the center of the kernel, the blue spatial 
pixels begin to be integrated. 

So far, we have assumed that the camera used to capture 
footage is stationary, assuring spatial correspondences for 
background pixels. For moving cameras, feature tracking is used. 
Sand and Teller [03] detail a system for finding accurate frame-
to-frame correspondences which can identify temporal neighbors. 
In our system video registration and alignment takes place prior to 
noise reduction. We only consider “high-confidence” trackable 
points (as determined by OpenCV’s GoodFeaturesToTrack()). 
We then select high-confidence optical-flow vectors (as 
determined using OpenCV’s feature tracking) that correspond to 
the trackable points that occur on the dominant flow field 
(typically the background). Finally, we select the mean of this 
feature set as a translation for each frame. Our approach removes 
only the dominant motion, although more complex tracking 
methods could also be used. We used the spatio-temporal video 
editing system of [Bennett and McMillan 03] to do this. Once 
stabilized, video can be processed and then the stabilization can 
be removed. Any residual motions or misalignment are treated as 
moving objects by our ASTA filter.  

 One way to conceptualize ASTA is as a voting scheme, where 
each vote is a measure of the support of the filter. Before ASTA is 
run on a pixel, we determine how many votes (pixels) are 
required (defined as l, Section 3.2). The temporal bilateral filter 
gathers some votes, and if they are not sufficient, more votes are 
gathered from the spatial bilateral filter. 
 The number of votes desired is defined as l×g(0,σh) ×g(0,σi).  
The factor g(0,σh)×g(0,σi) is our definition of a vote because it is 
the contribution to the denominator of the bilateral filter from a 
pixel that is an exact match in space and intensity (D(x,y)=0). The 
larger the dissimilarity value, the lower its contribution to the 
denominator is. Thus, by analyzing the denominator of a bilateral 
filter, we can determine if a sufficient number of votes were 
tallied. ASTA is thus formalized in Equation 4.  The terms n and d 
represent the numerator and denominator of Equation 1, 
respectively. 
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 (4) 5 LDR Tone Mapping 
Our tone mapping approach considers that SNR varies with 
intensity.  Thus, details in dark regions are less accurate than 
those in brighter regions. A tone mapper specialized for 
underexposed video should therefore associate a confidence level 
for details based on their luminous intensity. For instance, in the 
brightest areas of a video where the CCD received a reasonable 
exposure, the mix of details and large-scale features should be 
adjusted to achieve the tone mapping objectives. In darker areas 
the details should be attenuated to suppress noise. 
 Using the tone-mapping approach of Durand and Dorsey [02], 
it is possible to separate an image into details and large scale 
features. Subtracting the original log-image from a bilaterally 
filtered log-image provides an estimate of the image details. 
Durand and Dorsey then attenuate the large scale features by a 
uniform scale factor in the log domain to reduce the overall 
contrast of the HDR image, but leave the details untouched. This 
is not a problem for low-noise source images. In contrast, our 
LDR tone-mapping processes the details and large scale parts 
with different pipelines that attenuate details based on their 
estimated accuracy, as determined by local luminance, and it 
attenuates the large scale features to achieve the desired contrast. 
These two signals are then remixed to form the final output. 

 ASTA changes its filtering settings based on the number of 
pixels it wants to combine. First, not every pixel could ever get a 
full vote, because even though it may have the same 
neighborhood it is attenuated by the distance Gaussian. Therefore, 
we choose the temporal filter kernel size and Gaussian σh 
dynamically such that if every comparison were a perfect match, 
Dt º 2×w. Similarly, if the vote count for the temporal bilateral 
comes up short, the spatial bilateral attempts to have the 
remaining number of votes fall within the area of one standard 
deviation of its distance Gaussian by dynamically choosing σh′. 
The remaining sigmas, σi for the temporal bilateral (and σe for its 
dissimilarity value) and σi′ for the spatial bilateral, are held 
constant in each video’s processing.  

 The same nonlinear mapping function, with independent 
parameters, is used to attenuate image details and to adjust the 
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contrast of large scale features. It obeys the Weber-Fechner law of 
just-noticeable difference response in human perception but 
provides a parameter to adapt the logarithmic mapping in a way 
similar to the logmap function of Drago et al [03] and 
Stockham [72]. The mapping is given by: 
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Figure 6: Plots showing our nonlinear mapping function.  The left plot shows 
how our function does not have as severe a slope for luminances near 0 as 
does gamma correction as to not over accentuate dark regions (g=2.0 for 
gamma correction, y=64 for m(x, y)).  The inset shows that over the rest of 
0-255, they are mostly similar. The right plot shows a family of m(x, y)  
curves of y=2 (the most linear) through y=1024 (the most curved). 

Figure 1 depicts the entire VEC process for a noisy piece of 
footage of “walking fingers” with a single, dim light source.  The 
pseudo-color image demonstrates how ASTA adapts its 
integration strategy in different areas of each frame.  All color 
video footage in this paper was captured using a Sony DFW-V500 
4:2:2 uncompressed video camera.  The high-speed grayscale 
footage in the supplementary video was captured using a Point 
Grey Research Dragonfly Express operating at 120 frames per 
second.  Some of the videos in the supplemental video were 
captured via the Point Grey Research Color Flea at 30 frames per 
second.  Figures 8 and 9 show similar examples of our method.  
Figure 8 illustrates the processing of a typical LDR frame, and 
Figure 9 shows an example of initial poor utilization of the full 
dynamic range. Figure 10 illustrates the histograms of raw and 
processed virtual exposures.  ASTA does not noticeably change 
the histogram from the original, but our tone mapped result shows 
the enhanced dynamic range of our virtual exposure approach.  

7 Future Work 
Our current system enhances raw uncompressed video streams   
offline. This allows us to consider temporal extents of arbitrary 
lengths into both the past and the future.  Ideally, we would like 
to apply our methods in real-time and assume more modest 
resources— perhaps only a second or two of temporal state 
sampled at 180 fps.  This would allow our enhancement 
algorithms to be performed in-camera prior to compression. Our 
approach is a good fit for next generation video cameras 
incorporating capabilities like those described by Bidermann et al 
[03]. Noise filtering prior to compression might also lead to 
reduced bit rates, and better support compression schemes that 
incorporate foreground and background models.  

( )
( )

( )ψ

ψ
ψ

log

11log
,







 +−

= xMax
x

xm     (5) 

The white level of the input luminance is set by xMax and y 
controls the attenuation profile. As shown in Figure 6, the shape 
of our detail attenuation and contrast mapping function, m(x, y), 
is similar to a traditional gamma function, but it exhibits better 
behavior near the origin. As noted by Drago [03] the high slope of 
standard gamma correction for low intensities can result in loss of 
detail in shadow regions. This is particularly troublesome for 
underexposed images like those we target.  
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show the different processing paths of 

 Tone mapping (Fig. 7) begins by extracting the luminance of 
each frame and the chrominance ratio of each color component as 
discussed by Eisemann and Durand [04].  A bilateral filter is then 
applied to the log-image to extract the large scale image features.  
A temporal bilateral filter, with narrow support (small σi), is then 
applied to maintain temporal coherence. This result is then 
subtracted of from the log luminance of the original image to 
yields the detail features. 
 The linear intensities of the large scale features are next 
uniformly tone mapped using Equation 5, with a y1 of 
approximately 40.  The log-intensities of the details are attenuated 
based on the brightness of the linear large scale features. With a 
linear attenuation, a pixel with a brightness of .5×maximum 
would have half of its high frequency masked. Since the 
confidence of details degrades at dark values, we attenuate based 
on the curve in Equation 5 with a different y2 (often around 
700.0), resulting in a steep roll off for low intensities. 
 The log large scale features and log detail features are 
recombined to generate the final output luminance. Noise in the 
chrominance is attenuated via standard Gaussian blurring. Finally, 
the luminance and chrominance ratios are then recombined. 

6 Results 
It is difficult to evaluate the results of our LDR video processing 
based on still images which fail to capture temporally varying 
noise. Also, it is difficult to obtain a ground truth comparison for 
videos with dynamic elements. Our methods degenerate to 
temporal averaging followed by tone mapping for static scenes. 
The following examples are stills taken from video sequences 
with moving foreground objects under low light. However, 
processed videos most accurately demonstrate our results. 
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 Our current implementation is slow since it relies on multiple 
non-linear filtering steps. Currently, the processing of 640x480 
video takes approximately one minute per frame, and the 
processing times depend on the lighting level (since the filter’s 
temporal extent varies with luminance) and various parameters 
that control the filter extents. Durand and Dorsey [02] discuss a 
“fast-bilateral” approximation which would significantly improve 
our system’s performance. 
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Figure 8: A frame from a video processed using virtual exposures.  Upper 
Left: original frame; Upper Right: histogram stretched version; Bottom Left: 
red = number of temporal pixels integrated, green = number of spatial pixels 
integrated; Bottom Right: our result after filtering and tone mapping. 

    

  

    

  

Figure 10: Inspection of color histograms in our process.  From top to 
bottom: the original video frame and its histogram; a histogram stretched 
frame and its histogram showing quantization error; an ASTA processed 
frame and its histogram which is similar to the unfiltered histogram; the tone 
mapped ASTA frame and its stretched histogram without quantization error.   
Note the vertical scale in these histograms is vertically stretched to show 
maximum detail in each. 

Figure 9: A frame from a video processed using virtual exposures.  Upper 
Left: original frame; Upper Right: histogram stretched version; Bottom Left: 
red = number of temporal pixels integrated, green = number of spatial pixels 
integrated; Bottom Right: our result after filtering and tone mapping. 
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Abstract
Median filtering is a cornerstone of modern image processing   
and is used extensively in smoothing and de-noising applications.  
The fastest commercial implementations (e.g. in Adobe® Pho-
toshop® CS2) exhibit O(r) runtime in the radius of the filter, 
which limits their usefulness in realtime or resolution-independent 
contexts. We introduce a CPU-based, vectorizable O(log r) algo-
rithm for median filtering, to our knowledge the most  efficient yet 
developed. Our algorithm extends to  images of any bit-depth, and 
can also be adapted to  perform bilateral filtering. On 8-bit  data 
our median filter outperforms Photoshop’s implementation by up 
to a factor of fifty.

CR Categories:    F.2.2 [Analysis of Algorithms and Problem 
Complexity]: Nonnumerical  Algorithms and Problems – Sorting 
and Searching; I.4.3 [Image Processing and Computer Vision]: 
Enhancement – Filtering ; D.2.8 [Software Engineering]: Metrics 
– Complexity Measures; E.1 [Data Structures]: Arrays

Keywords:   median filtering, bilateral filtering, rank-order filter-
ing, sorting, image processing, algorithms, histograms, data struc-
tures, complexity, SIMD, vector processing

1  Introduction

1.1  Median Filtering

The median filter was introduced by Tukey [1977], and over the 
years tremendous effort has gone into its  optimization and refine-
ment. It provides  a mechanism for reducing image noise, while 
preserving edges more effectively than a linear smoothing filter. 
Many common image-processing techniques such as rank-order 
and morphological processing are variations on the basic median 
algorithm, and the filter can be used as a steppingstone to more 
sophisticated effects. However, due to existing algorithms’  fun-
damental slowness, its practical use has typically been restricted 
to small kernel sizes and/or low-resolution images.

Figure 1:  8-Bit Median Filter Performance

Adobe® Photoshop® CS2 is the de facto  standard for high-
performance image processing, with a median filter that scales to 
radius 100. This  filter exhibits roughly O(r) runtime per pixel, a 
constraint which significantly reduces its  performance for large 
filtering kernels. A variety of O(r) algorithms are well known (e.g. 
Huang 1981), but it is not obvious  that a faster algorithm should 
exist. The median  filter is not  separable, nor is it  linear, and there 
is  no iterative strategy for producing the final result, as there is 
with  e.g. Gaussian Blur [Heckbert 1986], or the Fast Fourier 
Transform [Cooley et  al. 1965]. A fast, high-radius implementa-
tion would be of considerable theoretical and practical value.

Gil et al. [1993] made significant progress  with a tree-based 
O(log2r) median-filtering algorithm, but its  per-pixel branching 
nature renders it ill-suited for deep-pipelined, vector-capable 
modern processors. Other efforts  have resorted to massive paral-
lelism on the presumption that a single processor is  insufficient: 
according to Wu et al. [2003], “...designing a parallel algorithm to 
process [the median  filter] is  the only way to get a real-time re-
sponse.” Ranka et al. [1989] proposed a parallel algorithm with a 
processor-time complexity of O(log4r), but this curve actually 
scales worse than linear for r   < 55 (= e4),  the point at which a 1% 
increase in radius corresponds to a 1% increase in computation.

Our algorithm overcomes all of these limitations and achieves 
O(log r) runtime per pixel on 8-bit data, for both median and bi-
lateral filtering. It is fully vectorizable and uses just O(r) storage. 
It also adapts as an O(log2r) algorithm to arbitrary-depth images, 
on  which it runs up to twenty times as fast  as Photoshop’s 16-bit 
Median filter. To our knowledge, the presented O(log r) algorithm 
is  the most  efficient  2D median filter yet developed, and processes 
8-bit data up to fifty times faster than Photoshop’s Median filter.

Fast Median and Bilateral Filtering
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Figure 2: Median Filter Variations.  Top row: original; sharpened 
with Gaussian; sharpened with median (note fewer halo artifacts.)  
Middle row: Filtered at 20th; 50th [median]; and 80th percentiles. 
Bottom row: “High Pass” using median; bilateral smoothing filter; 

logarithmic bilateral filter.

1.2  Bilateral Filtering

The Bilateral filter was  introduced by Tomasi et al. [1998] as a 
non-iterative means of smoothing images while retaining edge 
detail. It involves a weighted convolution in which the weight for 
each pixel depends not only on its distance from the center pixel, 
but also its relative intensity. As described, the bilateral filter has 
nominal O(r2) computational cost  per pixel. Photoshop® CS2’s 
16-bit Surface Blur filter reflects this O(r2) complexity, and be-
comes unusably  slow for even moderate radii. On 8-bit data, Pho-
toshop’s  Surface Blur exhibits a performance curve nearly identi-
cal to its  8-bit Median filter, suggesting that they  share the same 
core O(r) algorithm.

Durand et al. [2002] developed a much more efficient technique, 
refined and accelerated by Paris et al. [2006]. Durand’s method 
approximates the bilateral  by filtering subsampled copies  of the 
image with discrete intensity  kernels, and recombining the results 
using linear interpolation. It  has the paradoxical property of be-
coming faster  as  the radius increases (due to greater subsam-
pling), but also has some potential drawbacks. For one, it is not 
translation-invariant: the exact output is dependent on the phase of 
the subsampling grid. Also, the discretization may lead to a fur-
ther loss of precision, particularly on high-dynamic-range images 
with narrow intensity-weighting functions.

Our bilateral filtering algorithm maintains high resolution in both 
space and intensity, and is translation-invariant. It is based on a 
box spatial kernel, which can be iterated to yield smooth spatial 
falloff. It is derived from the same core algorithm as our fast 
O(log r) median filter, and adapts  to 16-bit and HDR data with 
minimal loss of precision.

1.3  Structure

Our approach in this  paper will be first to  illustrate the conven-
tional O(r) median algorithm for 8-bit images, and analyze its 
performance and limitations. Then we will show in steps  how to 
improve it;  first  by constant  factors, then into O(√r) and O(∛r) 
algorithms, and from there into an O(log r) algorithm. We will 
show how our approach adapts to higher bit-depth data, such as 
16-bit and HDR floating-point. Finally, we will show how the 
algorithm can be adapted to perform bilateral filtering, and com-
pare it with previous methods.

2  The Basic O(r) Algorithm

Consider the case of applying a radius-r median filter to an 8-bit 
image. Assume a source image that is larger than  the destination 
by  r pixels on all sides, to sidestep edge-related concerns. (In 
practice, we repeat edge pixels to fill undefined areas, and process 
color images on a per-channel basis.) Because the median  filter is 
local, it can be applied to arbitrary-size images in  tiles. As a con-
sequence, its total runtime scales linearly  with image area: O(S2) 
for an S-by-S image.

The fundamental property that concerns us here is runtime per 
pixel, as a function of filter radius. This corresponds  to the per-
formance a user will experience while adjusting the filter radius, 
and is the primary differentiating characteristic between median-
filtering algorithms. For reference, a brute-force implementation 
can calculate each output pixel  in O(r2 log  r) time, by sorting the 
corresponding (2r + 1)2 -pixel input window and selecting the 
median value as output.

On discrete data, a radix-sort can be used to reduce the sorting 
complexity to O(r2) operations; this can  be done for some 
floating-point data as well [Terdiman 2000]. In the case of 8-bit 
data, we use a 256-element histogram, H. Once the input values 
are added to H, the median value lies in the first index for which 
the sum of values to that index reaches 2r2 + 2r + 1. The median 
index can be found by integrating the histogram from one end 
until the appropriate sum is reached.

An improved algorithm was proposed by Huang [1981], based on 
the observation that adjacent windows overlap  to a considerable 
extent. Huang’s algorithm makes use of this  sequential overlap  to 
consolidate the redundant calculations, reducing the computa-
tional complexity to O(r). A modified version of Huang’s algo-
rithm is below:
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r: radius of median filter. (shown above as r = 3.)
H: 256-element histogram.
I: input image, S + 2r pixels square.
O: output image [inset], S pixels square.

initialize H to I[0 .. 2r][0 .. 2r].  // yellow region
find median value m in H, write m to O[0][0].
    for row = 1 to S - 1:
        add values I[2r + row][0 .. 2r] to H.
        subtract values I[row - 1][0 .. 2r] from H.
        find median value m in H; write m to O[row][0].
    step sideways to next column (and process bottom to top, etc.).

Figure 3:  Pseudocode for Huang’s O(r) Algorithm

Huang’s algorithm is a significant  improvement over the brute-
force method. However, the window-sliding step  dominates the 
calculation with O(r) runtime per pixel, while the histogram-
scanning takes  constant time per pixel. This suggests that we 
should  look for a way to make the window-sliding faster, even at 
the expense of making the histogram-scanning slower.

Observe that as  the window zigzags through the image, it passes 
through each region several  times, performing nearly the same 
operations on each pass. (Picture mowing your lawn back and 
forth, shifting sideways one centimeter each time.) This redun-
dancy is  considerable, and mirrors  the adjacent-window overlap 
that led to Huang’s algorithm.

The difficulty  is that these redundant calculations occur at widely 
spaced time intervals in the computation; perhaps tens of thou-
sands of processor cycles apart, so they cannot  be combined using 
the same sequential  logic that led to the O(r) technique. Yet, 
eliminating these redundancies is the key to a dramatically faster 
algorithm.

3  The O(log r) Algorithm

3.1  Synchronicity

The fundamental  idea behind this paper, and the mechanism that 
enables our fast algorithm, is  the observation that if multiple col-
umns are processed at once, the aforementioned redundant  calcu-
lations become sequential. This gives us the opportunity  to con-
solidate them, resulting in huge increases in performance.

3.2  Distributive Histograms

A straightforward  adaptation of Huang’s algorithm to process N 
columns at once involves the maintenance of N histograms, one 
per output column: H0 .. HN-1. This  is essentially just a rearrange-
ment of operations; the runtime complexity is  unchanged. Each 
input pixel  gets  added to 2r  + 1 histograms over the course of 
filtering the image, leading to the O(r) runtime complexity.

Fortunately, the explicit maintenance of each histogram Hn is 
unnecessary, due to the distributive property of histograms. This is 
where our approach diverges from Huang’s algorithm. Histogram  
distributivity means that for disjoint image regions A and B:

 HA∪B[v]  ≡  HA[v] + HB[v]                                         (1)

In other words, if an image window W  is  the union of two disjoint 
regions A and B, then its histogram HW is equal to HA + HB. The 
median element of W  can then be found by scanning the implicit 
histogram HW, splicing it together from HA and HB on  the fly. 
(This extends to signed linear combinations; HA ≡ HW - HB, etc.)

In the case of median-filtering N columns, our approach is to form 
a set H* of partial histograms P0 .. PN-1 (whose elements may be 
signed), such that each histogram H0 .. HN-1 is representable as the 
sum of T partial histograms from H*. Figure 4 shows how a row 
of pixels v0 .. v2r+8 is added to H*, for the case N = 9, T = 2.

Huang: H0 .. H8

H0[v0 .. v2r    ]++;
H1[v1 .. v2r+1]++;
H2[v2 .. v2r+2]++;
H3[v3 .. v2r+3]++;
H4[v4 .. v2r+4]++;
H5[v5 .. v2r+5]++;
H6[v6 .. v2r+6]++;
H7[v7 .. v2r+7]++;
H8[v8 .. v2r+8]++;

18r + 9 operations

Our Method: P0 .. P8 ⊆  H*

P0[v0..v3]++;  P0[v2r+1..v2r+4]--;
P1[v1..v3]++;  P1[v2r+2..v2r+4]--;
P2[v2..v3]++;  P2[v2r+3..v2r+4]--;
P3[     v3]++;  P3[         v2r+4]--;
P4[v4 .......................... v2r+4]++;
P5[v4     ]--;    P5[v2r+5         ]++;
P6[v4..v5]--;    P6[v2r+5..v2r+6]++;
P7[v4..v6]--;    P7[v2r+5..v2r+7]++;
P8[v4..v7]--;    P8[v2r+5..v2r+8]++;

2r + 41 operations

Mapping:

H0 ≡ P0 + P4

H1 ≡ P1 + P4

H2 ≡ P2 + P4

H3 ≡ P3 + P4

H4 ≡         P4

H5 ≡ P5 + P4

H6 ≡ P6 + P4

H7 ≡ P7 + P4

H8 ≡ P8 + P4

T = 2

Figure 4: Adding a row of pixels to H*, for the case N = 9, T = 2.                                      
Each layer shows how the corresponding histogram Hn is formed 
from partial histograms Pn in H*. The pseudocode shows how a 

row of pixels v0 .. v2r+8 is added to H*. The “holes” represent pix-
els that are added to the central histogram P4 but subtracted from 

partial histograms, canceling themselves out.
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The histogram set H* is  arranged like a tree, with a central histo-
gram (P4) representing the input window for the central column, 
and the other partial histograms Pn representing the difference 
between the central and adjacent  windows. The sum of each par-
tial plus central histogram yields  the full histogram for the corre-
sponding  square input window. By widening the yellow central 
region and fitting the partial histograms to its  edges, the 9-column 
technique can be adapted to perform median filtering of arbitrary 
radius. The time spent modifying H* is  still O(r), but with a much 
lower constant than Huang’s algorithm. The median extraction 
time from H* remains constant regardless of r.

The more fundamental  improvement in efficiency comes when we 
allow the number of columns N to vary with r, conceptually add-
ing more planes to Figure 4. For N output columns, the number of 
modifications to H* per output pixel is (N2 + 4r  + 1) / N. (The 
graphic in  Figure 4 show the case of N = 9, r = 4, requiring 98 
adjustments to H* per row or about  11 per output pixel.) Solving 
for N to minimize the number of adjustments  gives N ≈ 2√r, 
which yields O(√r) histogram modifications per pixel. Thus, the 
complexity of the T = 2, variable-N adaptive algorithm is O(√r).

3.3  Three Tiers and Beyond

Figure 5:  H* Histogram Layout for N = 63, T = 3.

Figure 5 shows a layout  for processing sixty-three columns  at 
once. It is  the three-tiered analogue of Figure 4, this  time 
“viewed” from the side. There is a single shared histogram P31 
[yellow] corresponding to the central window; eight partial histo-
grams [orange] at seven-pixel intervals; and for each of these, six 
small partial histograms [red] at unit  intervals; sixty-three histo-
grams altogether. Each input pixel is added/subtracted to each 
histogram intersecting its  column. In this example, a 63-by-1 
block of output is produced at each iteration. The mapping of Pn 
to Hn becomes:

Hn = P31 + P7!n/7"+3 + Pn  (2)

where the second and third terms are ignored if they match earlier 
terms (e.g., H24 = P31 + P24.) The structure of H* is recursive;  the 
central yellow histogram forms a rough approximation to any 
particular Hn; the orange partial histograms refine that approxima-
tion, and the red histograms provide the final correction to make 
the sums exact. Once H* is initialized, the full histogram of each 
of the 63  square input windows is expressible per Eq. 2 as the sum 

of one red histogram (or none), one orange histogram (or none), 
and the yellow central  histogram. The illustrated case of N = 63, T 
= 3,  r  = 31 requires  ~18 histogram modifications per output pixel. 
The median-extraction from H* takes constant time, as the three 
partial histograms are spliced together on the fly. 

For the general case of 3-tiered structures, processing N columns 
at once and with tier radix √N, the number of histogram adjust-
ments per output pixel  becomes √N + ((4r + 2) / N). For radius r, 
solving for optimal N yields N ≈ 4r⅔, and the runtime of the three-
tiered adaptive algorithm is therefore O(∛r).

In practice, three tiers covers the realistic range of implementation 
(into the hundreds), but our technique can be extended to arbitrary 
T. In the limit, a radius-r median filter can be computed across N 
= O(r) columns at once, using N histograms arranged into  T = 
O(log r) tiers  of constant radix. For example, a radius one-million 
median filter can be computed across N = 96 = 531,441 columns 
at once, using 96 partial histograms arranged in seven tiers of 
radix 9, occupying roughly 500 megabytes of storage. Sliding the 
window from one row to  the next requires O(log r) ≈ 114 histo-
gram modifications per output pixel. Extracting each median  takes 
O(log r) steps; in this case splicing up to seven partial histograms 
together to  construct each Hn, counterbalancing the O(log r) com-
plexity of writing to H*. Therefore, the overall computational cost 
per pixel is O(log r).     ☐

r:    radius of median filter.
H*: Array of partial histograms, processing N columns.
I:    input image, N + 2r pixels square.
O:  output image, N pixels square.

for each row in  [0 .. 2r]:      // Initialize H*
        Add row, I[row][0 .. 2r + N - 1] to H*, as per Figure 4
for each output pixel in O[0][col]:  // compute first N median values
        scan Hcol (implicit in H*) to the find the median m,
        write O[0][col] = m.
for row = 1 to N - 1: // step from top to bottom of image
        add new bottom row, I[row + 2r][0 .. 2r + N - 1], to H*.
        subtract old top row, I[row - 1][0 .. 2r + N - 1], from H*.
        find N new median values in H*; write to O[row][0 .. N - 1].

Figure 6:  Pseudocode for O(log r) Algorithm
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3.4  Implementation Notes

Scanning the histogram from index zero to find the median takes 
about 128 steps  on average. Huang [1981] suggested using each 
output  value as a “pivot” to find the next median value: as H is 
scanned to find m, we keep track of the number of values v < m in 
H. Then as we add and remove pixels  from H, we keep a running 
count of how many values satisfy v < m. This allows us to scan 
the updated histogram starting from m, which is typically much 
faster than starting from index zero.

Figure 7: Pivot Tracking. The middle image shows the approxi-
mation obtained using one pivot per sixteen columns to track the 
smallest median values. H* is then scanned upwards from these 
pivots (several columns at a time, vectorized) to yield the exact 

median result, right.

This heuristic adapts  to  the O(log r) algorithm by using O(log r) 
pivots  across the N columns, with each pivot tracking the smallest 
median value in its respective columns. This approach obtains 
much of the benefit of the heuristic while preserving the O(log r) 
complexity. Since the pivot tracking involves many consecutive 
bytewise compares, it is ideally suited for vector optimization. 

Finally, it is  useful to interleave the partial  histograms Pn in mem-
ory, so that  multiple adjacent histograms can be modified simulta-
neously using vector loads and stores. This greatly accelerates the 
reading and writing of H*.

4  Higher-Depth Median Filtering

4.1  Adapting the 8-bit Algorithm

16-bit and HDR images have already become mainstream, so it  is 
important that our median filter work with images of arbitrary bit-
depth. A direct extension of the 8-bit algorithm is problematic, 
because the histograms must stretch to accommodate every possi-
ble value, growing exponentially with bit-depth. The algorithm 
still remains O(log  r), but storage considerations render it  imprac-
tical for 16-bit images and impossible for floating-point images.

4.2  The Ordinal Transform

H* is reduced  to a manageable size through a technique we call 
the ordinal transform. This involves sorting  the input image val-
ues, storing the sorted list, and replacing each cardinal value with 
its ordinal equivalent. (Duplicate cardinal values map to  consecu-
tive ordinal values.) The median filter is  then applied to the ordi-
nal image, and the transform is  inverted to restore the cardinal-
valued result. The ordinal transform operates on images of any 
depth, in logarithmic or constant time per pixel.

In this operation, the nonlinearity of the median filter is crucial. 
Any linear filter (e.g., Gaussian blur) would not  be invariant  under 
the ordinal transform, but  the median filter is! That is because 
rank-order is preserved;  the kth-smallest cardinal  value maps to the 
kth-smallest  ordinal value. After the ordinal  transform is applied, 
the median filtering proceeds as in Section 3, this time using 
single-bit histograms Pn (sufficient here because each ordinal 
value is unique in the image), and the results are inverse-
transformed to yield the final filtered image.

Figure 8:  The Ordinal Transform. Duplicate cardinal values (e.g. 
94, 94, left) map to consecutive ordinal values (2 and 3, right).

Recall that  the histogram elements  in H* can go negative. At first 
this  appears problematic because the required range [-1, 0, 1] 
doesn’t fit into a single bit. However, since each summed implicit 
histogram value Hn[v] can only be either zero or one, only the 
lowest bit from each partial histogram must participate in the 
summation. Hence a single bit is  sufficient for each element of Pn, 
and the splicing accomplished through a bitwise XOR.

4.3 The Compound Histogram

For processing N columns in parallel, this  approach still requires 
the allocation and maintenance of N single-bit histograms. How-
ever, due to the uniqueness of values in the ordinal image, we can 
take advantage of a much more efficient encoding.

Consider the full histogram obtained by splicing the nth set of 
partial histograms in H* (consisting of the central  histogram plus 
one partial histogram from each tier), to yield the single-bit histo-
gram for the nth input window. Label this binary histogram Bn. By 
definition, the single bit Bn[v] indicates whether the ordinal value 
v lies in the input window n.

Now, for N <= min(2r, 128), instead of allocating N binary histo-
grams, we allocate a single 8-bit compound histogram  Hc. As 
rows of pixels v = I[row][col] are added, we adjust Hc as follows:

Hc[v] = {
0xFF - col, col < N - 1

0x80,  N - 1 <= col <= 2r       (3)

0x80 - (col - 2r), col > 2r

Since the ordinal  values in I can have any arrangement, the com-
pound histogram Hc is filled in arbitrary order. As rows of pixels 
are removed, the corresponding elements of Hc are zeroed. The 
power of this technique becomes clear when it  comes time to scan 
the implicit histogram Bn to find the nth median output value.

11 4 13 2

7 8 1 14

0 15 6 9

12 3 10 5

440 101 561 94

206 206 73 805

19 999 162 310

440 94 361 123
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Figure 9: The Compound Histogram Hc

In our initial approach, each implicit histogram Bn was spliced 
together from O(log r) partial histograms, taking O(log r) time per 
element. With the compound histogram, using 8-bit modular 
arithmetic, elements of Bn can now be computed in constant time:

          Bn[v] = (Hc[v] + n) >> 7.                                                   (4)

For N > 128, this technique extends in a straightforward manner 
to  16-bit  compound histograms, sufficient for N <= 32768, and so 
on. The computational complexity is independent of element size.

4.4 Coarse-To-Fine Recursion

There is one final detail. As the radius increases, the histogram 
size scales  as O(r2), which directly affects  the histogram scanning 
distance and thus the algorithm’s time-complexity. This complica-
tion  is addressed by computing the median in stages from coarse 
to  fine precision. Alparone et al. [1994] applied a similar tech-
nique to the O(r) algorithm, employing two levels of resolution to 
process 10, 12, or 14-bit images in faster (but  still O(r)) time. 
Here we apply an analogous technique to our log-time algorithm.

In our case, the coarse-to-fine calculation is performed by right-
shifting the ordinal image 8 bits at a time (or similar radix) until it 
reaches a fixed low resolution;  e.g., 10 bits  per pixel. Then the 
O(log r) algorithm from Section 3 is applied to the low-resolution 
data (whose values are no longer unique), storing not only the 
median values, but also the number of values strictly below the 
median. This result forms a pivot from which we calculate the 
median at the next-higher level of resolution. For example, if the 
lowest-resolution median value for a pixel is  0x84, and there are n 
values below 0x84 in its histogram, then there will be n values 
below 0x8400 in the next-higher-resolution histogram, and the 
median will be in [0x8400 .. 0x84FF]. This scanning is bounded 
by  a constant [256] number of steps per iteration, with  each itera-
tion  adding eight bits of precision to the output. The final iteration 
is  performed using the compound histogram, which yields the 
full-precision ordinal result. The entire process requires O(log  r) 
levels of recursion, each taking O(log r) time as shown in Section 
3, for an overall computational complexity of O(log2 r).    ☐

4.5 Implementation Notes

Applying  a radius-r  median filter to an ordinal image cannot out-
put any of the lowest (2r2 + 2r) ordinal values, because by defini-
tion  the median must exceed that many values. The filter can thus 

treat all such values as a single low constant, and likewise the (2r2 
+ 2r) highest values as a single high constant, without affecting 
the final result. This  “endpoint compression” can be incorporated 
into  the ordinal transform, allowing input windows significantly 
larger than 216 pixels to be filtered using 16-bit ordinal images.

Interestingly, since each ordinal value is unique, the median out-
put for each pixel also tells us where in  the source image that 
value came from, generating a vector field. On high-frequency 
images this field is quite noisy, but on smoother images it exhibits 
surprising  structure. (Figure 14 on the last  page is an emergent 
example of this structure.) Also, a variation of Hc where both row 
and column information is stored at each index can allow histo-
gram elements of any computable region (e.g., a circle) to  be de-
termined in constant time. We have not fully explored these prop-
erties, but they suggest possible directions for future research.

For our implemented range of radii [1...127], the compound histo-
gram is efficient enough not to require the coarse-to-fine recursion 
at all, except on carefully-constructed worst-case data. (Real-
world images are invariably  close to best-case.) In fact, the ordi-
nal transform by itself is often the performance bottleneck. As 
shown in Figure 10, our implementation outperforms the 16-bit 
Median filter in Photoshop® CS2 by up to a factor of 20, with 
identical numerical results. 

         
Figure 10:  16-Bit Median Filter Performance

5  The Bilateral Filter
The bilateral filter is  a normalized convolution in which the 
weighting for each pixel p is determined by the spatial distance 
from the center pixel s, as well as its relative difference in inten-
sity. In the literature (Tomasi et al. [1998] and Durand et al. 
[2002]), the spatial  and intensity weighting functions f and g are 
typically Gaussian;  Photoshop® CS2 implements a box spatial 
filter and triangular intensity filter. These functions  multiply to-
gether to  produce the weighting for each pixel. For input image I, 
output image J and window Ω, the bilateral is defined as follows:

The special case of a spatial  box-filter (with arbitrary intensity 
function) is worth studying, because the weighting function be-
comes constant  for all  pixels of a given intensity. Under this  con-
dition, the histogram of each spatial window becomes sufficient 

Js =
∑

p∈Ω

f(p− s)g(Ip − Is)Ip

/∑

p∈Ω

f(p− s)g(Ip − Is).    (5)
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to  perform the filtering operation. Our O(log r) median-filtering 
algorithm already generates these histograms, so the bilateral 
convolution can be appended in constant time per pixel, scaling 
with the support of the intensity function g.

For higher-precision data, one can either dither the source data 
into  8 bits before processing (which introduces  surprisingly little 
error), or else downsample the source intensities  into the histo-
grams (along the lines of Paris et al. [2006]), which requires larger 
histogram elements but  yields better accuracy. Durand et al. 
[2002] applied the bilateral  to log-scaled images and re-expanded 
the result, but this  approach can pose precision problems when 
filtering 8-bit  data. Fortunately, this logarithmic approach can be 
approximated on linear data by scaling the width of g in propor-
tion  to the intensity  of the center pixel while biasing the weight 
toward smaller values, yielding a new function g’. The rightmost 
image in Figure 11 shows the result of this  logarithmic bilateral 
on  8-bit data, using a simple variable-width triangular function for 
g’. (Note the improved lip color and hair detail.) More sophisti-
cated intensity functions  can be precomputed for all  (Ip, Is). Our 
linear-data approximation to the logarithmic bilateral is as fol-
lows:

One potential concern with our histogram-based method is the 
imperfect frequency response of the spatial box filter. Visual arti-
facts may resemble faint mach bands, but these artifacts tend to be 
drowned out by the signal of the preserved image (e.g., the images 
in  Figure 11 are box-filtered.) Still, smooth spatial  falloff is 
achievable with our method, using an iterative technique. Direct 
iteration of the bilateral can yield an unintentionally cartoonish 
look  [Tomasi 1998], but indirect iteration is more effective. At 
each step the output is re-filtered, while continuing to use the 
original  data for the intensity windows. For homogeneous areas 
or with wide intensity kernels, this converges to a Gaussian  with-
out creating the cartoonish look:

Figure 12: Original; One iteration; Three iterations (Eq. 8). 

For the special case of the box-weighted bilateral, our technique 
achieves the discrete-segments result of Durand et  al. [2002] in 
similar time, but with 256 segments  instead of 10-20, and at  full 
spatial resolution. This makes the result translation-invariant 
(avoiding artifacts due to the phase of the subsampling grid), and 
the high segment count allows high-dynamic-range images to  be 
filtered with minimal loss of precision. Slight color artifacts may 
be introduced as a result of processing the image by channel, but 
we have found these also to be imperceptible on typical images.

With a single iteration and a fixed triangular intensity function 
(support 80 levels), our results numerically match Photoshop’s 
Surface Blur output, with up to twenty-fold acceleration. The 
performance bottleneck (over 80% of the calculation) is the con-
stant time spent multiplying each window’s histogram by the in-
tensity function, which accounts for the flatness of our perform-
ance curve. Reducing our implementation to  64 segments should 
nearly triple its speed, while maintaining very high quality results.

                    
Figure 13:  Bilateral Filter Performance

Figure 11: The Bilateral Filter.  From left:  8-Bit Source Image; Linear-Intensity Bilateral (Eq. 5); Logarithmic-Intensity Bilateral (Eq. 6).

Js =
∑

p∈Ω

f(p− s)g′(Ip/Is)Ip

/∑

p∈Ω

f(p− s)g′(Ip/Is).   (6)

where g′(x) = g(log x)/
√

x.    (7)

In+1
s =

∑

p∈Ω

f(p− s)g(In
p , I0

s )In
p

/∑

p∈Ω

f(p− s)g(In
p , I0

s ).   (8)
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6  Conclusion
We have presented a logarithmic-time median filter algorithm, 
scalable to arbitrary radius and adaptable to images of any bit-
depth. We believe this is the most efficient median algorithm yet 
developed, both in terms of theoretical complexity  and real-world 
performance. Our algorithm can be extended to perform general 
rank-order filtering, and it  is flexible enough to accomplish a wide 
variety of practical and creative tasks.

Significantly, we have shown that our algorithm can be adapted to 
perform bilateral filtering, where it becomes a highly effective 
noise-removal tool. Our algorithm provides a high-precision, 
translation-invariant, realtime implementation of the bilateral 
filter, and supports nonlinear intensity scaling, which greatly  en-
hances the quality of the result.

Our algorithms have shown their advantage not only at high radii 
but across the spectrum. In the time it takes Photoshop® CS2 to 
process a 5x5 median or bilateral filter, our implementation can 
process any kernel up to  255x255. We have adapted our algorithm 
to  multiple processors with near-linear performance gains, up to 
3.2x faster on a four-processor system versus a single processor. 
The accompanying videos demonstrate the realtime performance 
of our median and bilateral filters.

Now that the speed of the median filter has been brought onto par 
with  the workhorse filters of image-processing  (e.g. Gaussian blur 
and FFT), we anticipate that  the median filter and its  derivatives 
will  become a more widely used part of the standard image-
processing repertoire. It is our hope that our algorithms spark 
renewed interest in this line of research, and we are confident that 
new applications and discoveries lie just around the corner.
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Real-Time Video Abstraction

Holger Winnemöller∗ Sven C. Olsen∗ Bruce Gooch∗

Northwestern University

Figure 1: Abstraction examples. Original: Snapshots of a guard in Petra (left) and two business students (right). Abstracted: After several
bilateral filtering passes and with DoG-edges overlayed. Quantized: Luminance channel soft-quantized to 12 bins (left) and 8 bins (right).
Note how folds in the clothing and other image details are emphasized (stones on left and student’s shadows on right).

Abstract

We present an automatic, real-time video and image abstraction
framework that abstracts imagery by modifying the contrast of vi-
sually important features, namely luminance and color opponency.
We reduce contrast in low-contrast regions using an approximation
to anisotropic diffusion, and artificially increase contrast in higher
contrast regions with difference-of-Gaussian edges. The abstrac-
tion step is extensible and allows for artistic or data-driven con-
trol. Abstracted images can optionally be stylized using soft color
quantization to create cartoon-like effects with good temporal co-
herence. Our framework design is highly parallel, allowing for a
GPU-based, real-time implementation. We evaluate the effective-
ness of our abstraction framework with a user-study and find that
participants are faster at naming abstracted faces of known persons
compared to photographs. Participants are also better at remember-
ing abstracted images of arbitrary scenes in a memory task.

CR Categories: I.3.3 [Computer Graphics]: Image Generation

Keywords: non-photorealistic rendering, visual perception, visual
communication, image abstraction

1 Introduction

Many image stylization systems are designed for purely artistic pur-
poses, like creating novel forms of digital art or helping laymen and
artists with laborious or technically challenging tasks. Recently,

∗{holger|sven|bgooch}@cs.northwestern.edu

several authors have proposed the goal of automatic stylization for
efficient visual communication, to make images easier or faster to
understand [DeCarlo and Santella 2002; Gooch et al. 2004; Raskar
et al. 2004]. Although we also cater to artistic stylization (Figure 1,
Quantized), our work focuses primarily on visual communication.

We present an automatic, real-time framework that abstracts im-
agery by modeling visual salience in terms of luminance and color
opponency contrasts. We simplify regions of low contrast while en-
hancing high contrast regions. For adjusting contrasts, we employ
several established image processing algorithms, which we modify
for greater parallelism, temporal coherence, and directability.

We show that a separated approximation to a bilateral filter, ap-
plied iteratively, is an effective, parallelizable approximation to the
process of simplifying images using anisotropic diffusion. We en-
sure that small input changes lead to similarly small output changes,
on a frame-per-frame basis using several smooth quantization func-
tions and avoid having to track object contours across frames.

A user study demonstrates the effectiveness of our framework
for simple recognition and memory tasks, showing that our frame-
work performs well even on small images, particularly on difficult
subject matter like faces. We thus believe that visual communica-
tion applications will greatly benefit from our framework, as per-
ceived fidelity is often paramount to actual fidelity for communica-
tion purposes. Possible applications include low-bandwidth video-
conferencing and portable devices.

2 Related Work

Previous work in image-based stylization and abstraction systems
varies in the use of scene geometry, video-based vs. static input,
and the focus on perceptual task performance and evaluation.

Among the earliest work on image-based NPR was that of Saito
and Takahashi [1990] who performed image processing operations
on data buffers derived from geometric properties of 3D scenes.
Our own work differs in that we operate on raw images, without
requiring underlying geometry. To derive limited geometric infor-
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Figure 2: Framework overview. Each step lists the function performed, along with user parameters. The right-most paired images show
alternative results, depending on whether luminance quantization is enabled (right) or not (left). The top image pair shows the final output.

mation from images, Raskar et al. [2004] computed ordinal depth
from pictures taken with purpose-built multi-flash hardware. This
allowed them to separate texture edges from depth edges and per-
form effective texture removal and other stylization effects. Our
own framework does not model global effects such as repeated tex-
ture, but also requires no specialized hardware and does not face
the technical difficulties of multi-flash for video.

Several video stylization systems have been proposed, mainly
to help artists with labor-intensive procedures [Wang et al. 2004;
Collomosse et al. 2005]. Such systems extended the mean-shift-
based stylization approach of DeCarlo and Santella [2002] to com-
putationally expensive three-dimensional video volumes. Difficul-
ties with contour tracking required substantial user correction of the
segmentation results, particularly in the presence of occlusions and
camera movement. Our framework does not derive an explicit rep-
resentation of image structure, thus limiting the types of stylization
we can achieve. In turn, we gain a framework that is much faster to
compute, fully automatic, and temporally coherent.

Fischer et al. [2005] explored the use of automatic stylization
techniques in augmented reality applications. To make virtual ob-
jects less distinct from the live video stream, they applied styliza-
tion effects to both virtual and real inputs. Although parts of their
system are similar to our own, their implementation is limited in
the amount of detail it can resolve, and their stylized edges tend to
suffer from temporal noise.

Recently, several authors of NPR systems have defined task-
dependent objectives for their stylized imagery and tested these
with perceptual user studies. DeCarlo and Santella [2002] use eye-
tracking data to guide image simplification in a multi-scale system.
In follow-up work, Santella and DeCarlo [2004] found that their
eye-tracking-driven simplifications guided viewers to regions de-
termined to be important. They also considered the use of compu-
tational salience as an alternative to measured salience. Our own
work does not rely on eye-tracking data, although such data can
be used. Our implicit visual salience model is less elaborate than
the explicit model of Santella and DeCarlo’s later work, but can be
computed in real-time. Their explicit image structure representation

allowed for more aggressive stylization, but included no provisions
for the temporal coherence featured in our framework.

Gooch et al. [2004] automatically created monochromatic hu-
man facial illustrations from Difference-of-Gaussian (DoG) edges
and a simple model of brightness perception. We use a similar edge
model and evaluation study to Gooch et al. but additionally address
color, real-time performance and temporal coherence.

3 Method

Our goal is to abstract images by simplifying their visual content
while preserving or even emphasizing most of the perceptually im-
portant information.

Our framework is based on the assumptions that (1) the human
visual system operates on different features of a scene, (2) changes
in these features are of perceptual importance and therefore visually
interesting (salient), and (3) polarizing these changes is a basic but
useful method for automatic image abstraction.

Several image features are believed to play a vital role in low
level human vision, among these are luminance, color opponency,
and orientation [Palmer 1999]. A sudden spatial change (high con-
trast) in any of these features can represent boundaries of objects,
subobject boundaries, or other perceptually important information.
High contrast in these features is therefore linked to high visual
salience, and low contrast to low salience. Based on this princi-
ple, several computational models of visual salience have been pro-
posed [Privitera and Stark 2000; Itti and Koch 2001].

For our automatic, real-time implementation we implicitly com-
pute visual salience with the following restrictions: we consider just
two feature contrasts, luminance, and color opponency; we do not
model effects requiring global integration; and we process images
only within a small range of spatial scales. To allow for artistic
control or more elaborate visual salience models, our framework
alternatively accepts arbitrary scalar fields to direct abstraction.

The basic workflow of our framework is shown in Figure 2. We
first exaggerate the given contrast in an image using nonlinear dif-
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fusion. We then add highlighting edges to increase local contrast,
and we optionally stylize and sharpen the resulting images.

3.1 Extended Nonlinear Diffusion

Perona and Malik [1991] defined a class of filters, called
anisotropic diffusion filters, which have the desirable property of
blurring small discontinuities and sharpening edges, as guided by
a diffusion conduction function that varies over the image. Using
such a filter with a conduction function based on feature contrast,
we can amplify or subdue the given contrast in parts of an image.
Barash and Comaniciu [2004] demonstrated that anisotropic dif-
fusion solvers can be extended to larger neighborhoods, thus pro-
ducing a broader class of extended nonlinear diffusion filters. This
class includes iterated bilateral filters as one special case, which we
prefer due to their larger support size and the fact that they can be
approximated quickly and with few visual artifacts using a sepa-
rated kernel [Pham and Vliet 2005].

Given an input image f (·), which maps pixel locations into some
feature space, we define the following filter, H(·):

H(x̂,σd ,σr) =

∫
e
− 1

2

(
‖x̂−x‖

σd

)2

w(x, x̂) f (x)dx∫
e
− 1

2

(
‖x̂−x‖

σd

)2

w(x, x̂)dx

(1)

In this formulation, x̂ is a pixel location, x are neighboring pix-
els, and σd is related to the blur radius. Increasing σd results in
more blurring, but if σd is too large features may blur across signif-
icant boundaries. The range weighting function, w(·), determines
where in the image contrasts are smoothed or sharpened by iterative
applications of H(·).

w(x, x̂,σr) = (1−m(x̂)) ·w′(x, x̂,σr)+m(x̂) ·u(x̂) (2)

w′(x, x̂,σr) = e
− 1

2

(
‖ f (x̂)− f (x)‖

σr

)2

(3)

For the real-time, automatic case, we set m(·) = 0, such that
w(·) = w′(·) and Equation 1 becomes the familiar bilateral filter,
where σr determines how contrasts will be preserved or blurred.
Small values of σr preserve almost all contrasts, and thus lead
to filters with little effect on the image, whereas for large values,
w′(·) σr→∞−−−−→ 1, thus turning H(·) into a standard, linear Gaussian
blur. For intermediate values of σr, iterative filtering of H(·) re-
sults in an extended nonlinear diffusion effect, where the degree of
smoothing or sharpening is determined by local contrasts in f (·)’s
feature space. We use σd = 3 throughout this paper and choose
σr = 4.25 for most images and the video.

With m(·) 6= 0, the range weighting function, w(·), turns into
a weighted sum of w′(·) and an arbitrary importance field, u(·),
defined over the image. In this case, m(·) and u(·) can be computed
via a more elaborate visual salience model [Itti and Koch 2001],
derived from eye-tracking data (Figure 3, [DeCarlo and Santella
2002]), or painted by an artist [Hertzmann 2001].

Tomasi and Manduchi [1998] suggested computing the bi-
lateral filter on a perceptually uniform feature space, such as
CIELab [Wyszecki and Styles 1982], so that image contrast is ad-
justed depending on just noticeable differences. We follow this ad-
vice and our parameter values assume that L ∈ [0,100] and (a,b) ∈
[−127,127]. Theoretically, the feature space could be extended to
include additional features, such as orientation-dependent Gabor
filters, although care would have to be taken to maintain percep-
tual uniformity of the combined feature space.

Figure 3: Automatic vs. external abstraction. Top Row: Original
image by DeCarlo and Santella [2002] and their abstraction using
eye-tracking data. Bottom Row: Our automatic abstraction, and
data-driven abstraction based on the eye-tracking data.

3.2 Edge detection

In general, edges are defined by high local contrast, so adding visu-
ally distinct edges to regions of high contrast further increases the
visual distinctiveness of these locations.

Marr and Hildreth [1980] formulated an edge detection mecha-
nism based on zero-crossings of the second derivative of the lumi-
nance function. They postulated that retinal cells (center), which
are stimulated while their surrounding cells are not stimulated,
could act as neural implementations of this edge detector. A com-
putationally simple approximation is the difference-of-Gaussians
(DoG) operator. Rather than using a binary model of cell-activation,
we define our DoG edges using a slightly smoothed step function,
D(·) (bottom inset, Figure 2) to increase temporal coherence in an-
imations. The parameter τ in Equation 4 controls the amount of
center-surround difference required for cell activation, and ϕe con-
trols the sharpness of the activation falloff. In the following, we
define Sσe ≡ S(x̂,σe) and Sσr ≡ S(x̂,

√
1.6 ·σe), with blur function

S(·) given in Equation 5. The factor of 1.6 relates the typical recep-
tive field of a cell to its surroundings [Marr and Hildreth 1980].

D(x̂,σe,τ,ϕe) =

{
1 if (Sσe − τ ·Sσr ) > 0,

1+ tanh(ϕe · (Sσe − τ ·Sσr )) otherwise.
(4)

S(x̂,σe) =
1

2πσe2

∫
f (x)c(x̂− x,σe)dx (5)

Here, σe determines the spatial scale for edge detection. The
larger the value, the coarser the edges that are detected. The thresh-
old level τ determines the sensitivity of the edge detector. For small
values of τ , less noise is detected, but real edges become less promi-
nent. As τ → 1, the filter becomes increasingly unstable. We use
τ = 0.98 throughout. The falloff parameter, ϕe, determines the
sharpness of edge representations, typically ϕe ∈ [0.75,5.0]. For
nb bilateral iterations, we extract edges after ne < nb iterations to
reduce noise. Typically, ne ∈ {1,2} and nb ∈ {3,4}.

Canny [1986] devised a more sophisticated edge detection al-
gorithm, which found use in several related works [DeCarlo and
Santella 2002; Fischer et al. 2005]. Canny edges are guaranteed to
lie on any real edge in an image, but can become disconnected for
large values of σe and are computationally more expensive. DoG
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Figure 4: Parameter variations. Coarse: Abstraction using coarse
edges (σe = 5) and soft quantization steps (q = 10,Λϕ = 0.9,Ωϕ =
1.6,ϕq = 3.1). Detailed: Finer edges (σe = 2) and sharper quanti-
zation steps (q = 14,Λϕ = 3.4,Ωϕ = 10.6,ϕq = 9.7).

edges are cheaper to compute and not prone to disconnectedness
but may drift from real image edges for large values of σe. We
prefer DoG edges for computational efficiency and because their
thickness scales naturally with σe.

Image-based warping (IBW) To fix small edge drifts linked to
DoG edges and to sharpen the overall appearance of our final result
we optionally perform an image-based warp (Figure 2, top-right).
IBW is a technique first proposed by Arad and Gotsaman [1999]
for image sharpening and edge-preserving expansion, in which they
moved pixels along a warping field towards nearby edges. Lovis-
cach [1999] proposed a simpler IBW implementation, in which the
warping field is the blurred and scaled result of a Sobel filter of
an input image. We use Loviscach’s method with Gaussian blur
σw = 1.5, and a scale factor of ϕw = 2.7.

3.3 Temporally coherent stylization

To open our framework further for creative use, we perform an op-
tional color quantization step on the abstracted images, which re-
sults in cartoon or paint-like effects (Figures 1 and 4).

Q(x̂,q,ϕq) = qnearest +
∆q
2

tanh(ϕq · ( f (x̂)−qnearest)) (6)

In Equation 6, Q(·) is the pseudo-quantized image, ∆q is the bin
width, qnearest is the bin boundary closest to f (x̂), and ϕq is a pa-
rameter controlling the sharpness of the transition from one bin to
another (top inset, Figure 2). Equation 6 is formally a discontinu-
ous function, but for sufficiently large ϕq, these discontinuities are
not noticeable.

For a fixed ϕq the transition sharpness is independent of the un-
derlying image, possibly creating many noticeable transitions in
large smooth-shaded regions. To minimize jarring transitions, we
define the sharpness parameter, ϕq, to be a function of the lumi-
nance gradient in the abstracted image. We allow hard bin bound-
aries only where the luminance gradient is high. In low gradient
regions, bin boundaries are spread out over a larger area. We thus
offer the user a trade-off between reduced color variation and in-
creased quantization artifacts by defining a target sharpness range
[Λϕ ,Ωϕ ] and a gradient range [Λδ ,Ωδ ]. We clamp the calculated
gradients to [Λδ ,Ωδ ] and then generate a ϕq value by mapping
them linearly to [Λϕ ,Ωϕ ]. The effect for typical parameter values
are hard, cartoon-like boundaries in high gradient regions and soft,
painterly-like transitions in low gradient regions (Figure 4). Typi-
cal values for these parameters are q ∈ [8,10] equal-sized bins and

Figure 5: Sample images from evaluation studies. The top row
shows the original images and the bottom row shows the abstracted
versions. All images use the same σe for edges and the same
number of simplification steps, nb. Left: Faces similar to those
in Study 1. Right: Sample images from Study 2.

a gradient range of [Λδ = 0,Ωδ = 2], mapped to sharpness values
between [Λϕ = 3,Ωϕ = 14].

Another significant advantage of our pseudo-quantization imple-
mentation is temporal coherence. In standard quantization, an arbi-
trarily small luminance change can push a value to a different bin,
thus causing a large output change for a small input change, which
is particularly troublesome for noisy input. With soft quantization,
such a change is spread over a larger area, making it less notice-
able. Using our gradient-based sharpness control, sudden changes
are further subdued in low-contrast regions, where they would be
most objectionable.

4 Evaluation

To verify that our abstracted images preserve or even distill percep-
tually important information, we performed two task-based studies
to test recognition speed and short term memory retention. Our
studies use small images because we see portable visual communi-
cation and low-bandwidth applications to practically benefit most
from our framework and because small images may be a more
telling test of our framework, as each pixel represents a larger per-
centage of the image.

Participants In each study, 10 (5 male, 5 female) undergradu-
ates, graduate students or research staff acted as volunteers.

Materials Images in Study 1 are scaled to 176×220, while those
in Study 2 are scaled to 152×170. These resolutions approximate
those of many portable devices. Images are shown on a 30-inch
Apple Cinema Display at a distance of 24 inches. The background
of the monitor is set to white and the displayed images subtend a
visual angle of 6.5 and 6.0 degrees respectively.

In Study 1, 50 images depicting the faces of 25 famous movie
stars are used as visual stimuli. Each face is depicted as a color
photograph and as a color abstracted image created with our frame-
work. Five independent judges rated each pair of photograph and
abstracted image as good likenesses of the face they portrayed. In
Study 2, 32 images depicting arbitrary scenes are used as visual
stimuli. Humans are a component in 16 of these images. Examples
of stimulus images are shown in Figure 5.

Analysis For both studies, p-values are computed using two-way
analysis of variance (ANOVA), with α = 0.05.
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4.1 Study 1: Recognition Speed

Study 1 assesses the recognition time of familiar faces presented as
abstract images and photographs. The study uses a protocol [Steve-
nage 1995] demonstrated to be useful in the evaluation of recogni-
tion times for facial images [Gooch et al. 2004].

Procedure Study 1 consists of two phases: (1) reading the list of
25 movie star names out loud, and (2) a reaction time task in which
participants are presented with sequences of the 25 facial images.
All faces take up approximately the same space in the images and
are three quarter views. By pronouncing the names of the people
that are rated, participants tend to reduce the tip-of-the-tongue ef-
fect where a face is recognized without being able to quickly recall
the associated name [Stevenage 1995]. For the same reason, partic-
ipants are told that first, last or both names can be given, whichever
is easiest. Each participant is asked to say the name of the person
pictured as soon as that person’s face is recognized. A study coor-
dinator records reaction times, as well as accuracy of the answers.
Images are shown and reaction times recorded using the Superlab
software product for 5 seconds at 5-second intervals. The order of
image presentation is randomized for each participant.

Results and Discussion In our study, participants are faster
(p < 0.018) at naming abstract images (M = 1.32s) compared to
photographs (M = 1.51s). The accuracy for recognizing abstract
images and photographs are 97% and 99% respectively, indicating
that there is no significant speed for accuracy trade-off. It can fur-
ther be concluded that substituting abstract images for fully detailed
photographs reduces recognition latency by 13%, a significant im-
provement not found by Sevenage [1995] and Gooch et al. [2004].
However, neither author used color images as stimuli.

4.2 Study 2: Memory Game

Study 2 assesses memory retention for abstract images versus pho-
tographs with a memory game, consisting of a grid of 24 randomly
sorted cards placed face-down. The goal is to create a match by
turning over two identical cards. If a match is made, the matched
cards are removed. Otherwise, the cards are placed face down and
another set of cards are turned over. The game ends when all pairs
are matched. We created a Java program of the card game in which
a user turns over a virtual card with a mouse click. The 12 im-
ages used in any given memory game are randomly chosen from
the pool of 32 images without replacement, and randomly arranged.
The program records the time it takes to complete a game and the
number of cards turned over.

Procedure Study 2 consists of three phases: (1) a practice mem-
ory game with alphabet cards, (2) a memory game of photographs,
and (3) a memory game of abstract images. All participants first
play a practice game with alphabet cards to learn the interface and to
develop a game strategy. No data is recorded for the practice phase.
For the remaining two phases, half the participants are presented
with photographs followed by abstracted images, and the other half
is presented with abstracted images followed by photographs.

Results and Discussion In our study, participants are quicker
(p time < 0.003, p clicks < 0.004) in completing a memory game us-
ing abstract images (Mtime = 59.95s, Mclicks = 49.2) compared to
photographs (Mtime = 76.13s, Mclicks = 62.4). The study demon-
strates that participants play the abstracted image version of the
game faster than the version using photographs. In addition, us-
ing the abstracted images requires fewer cards to be turned over,
possibly indicating that it is easier to remember previously revealed

Figure 6: Failure case. A case where our contrast-based impor-
tance assumption fails. Left: The subject of this photograph has
very low contrast compared with its background. Right: The cat’s
low contrast fur is abstracted away, while the detail in the structured
carpet is further emphasized. Despite this rare reversal of contrast
assignment, the cat is still well represented.

abstractions. We thus conclude that the automatic image abstraction
of our framework may produce more distinctive imagery.

5 Discussion and Conclusion

Performance We implemented and tested our framework in both
a GPU-based real-time version, using OpenGL and fragment pro-
grams, and a CPU-version using OpenCV. Both versions were
tested on an Athlon 64 3200+ with Windows XP and a GeForce
GT 6800. Performance values depend on graphics drivers, image
size, and framework parameters. Typical values for a 640× 480
video stream and default parameters are 9− 15 frames per second
(FPS) for the GPU version and 0.3−0.5 FPS for the CPU version.

Limitations Our framework depends on local contrast to estimate
visual salience. Images with very low contrast likely abstract too
much and loose significant detail. Simply increasing contrast of
the original image may reduce this problem, but can also increase
noise. Figure 6 demonstrates an inversion of our general assump-
tion, where important foreground objects have low contrast while
background regions have high contrast. In practice we have ob-
tained good results for many indoor and outdoor scenes.

Human vision operates at various spatial scales simultaneously.
By applying multiple iterations of a non-linear blurring filter we
cover a small range of spatial scales, but the range is not explicitly
parameterized and not as extensive as that of real human vision.

Several high-contrast features that may be emphasized by our
framework are actually deemphasized in human vision, among
these specular highlights and repeated texture. Dealing with
these phenomena using existing techniques requires global image
processing, which is impractical in real-time on today’s GPUs, due
to their limited gather-operation capabilities.

Our fixed equidistant quantization boundaries are arbitrary, mak-
ing it difficult to control results for artistic purposes. Constructing
spatially varying boundaries to better account for underlying dy-
namic range might prove beneficial.

Compression A discussion of theoretical data compression and
codecs exceeds the scope of the paper, but Pham and Vliet [2005]
have shown that video compresses better when bilaterally filtered,
judged by RMS error and MPEG quality score. Collomosse et
al. [2005] list theoretical compression results for vectorized car-
toon images. Possibly most applicable to this paper is work by
Elder [1999], who describes a method to store the color informa-
tion of an image only in high-contrast regions, achieving impressive
compression results.

Indication Indication is the process of representing a repeated
texture with a small number of exemplary patches and relying on
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Figure 7: Automatic indication. The inhomogeneous texture of
the bricks causes spatially varying abstraction. The resulting edges
indicate a brick texture instead of depicting each individual brick.

an observer to interpolate between patches. For structurally sim-
ple, slightly inhomogeneous textures with limited scale variation,
like the brick wall in Figure 7, our framework can perform simple
automatic indication. As noted by DeCarlo and Santella [2002],
such simple indication does not deal well with complex or fore-
shortened textures. Our automatic indication is not as effective as
the user-drawn indications of Winkenbach and Salesin [1994], but
some user guidance can be supplied via Equation 2.

Conclusion We have presented a simple and effective real-time
framework that abstracts images while retaining much of their per-
ceptually important information, as demonstrated in our user study.
Our optional stylization step is temporally highly stable, results in
effective color flattening and is much faster than the mean-shift pro-
cedures used in offline cartoon stylization for video [Collomosse
et al. 2005; Wang et al. 2004]. Interestingly, several authors [Barash
and Comaniciu 2004; Boomgaard and de Weijer 2002] have shown
that anisotropic diffusion filters are closely related to the mean-shift
algorithm. It is thus conceivable that various graphics applications
that today rely on mean-shift could benefit from the much speedier
anisotropic diffusion pre-process used in this paper.
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Two-scale Tone Management for Photographic Look
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(a) input (b) sample possible renditions: bright and sharp, gray and highly detailed, and contrasted, smooth and grainy

Figure 1: This paper describes a technique to enhance photographs. We equip the user with powerful filters that control several aspects of an
image such as its tonal balance and its texture. We make it possible for anyone to explore various renditions of a scene in a few clicks. We
provide an effective approach to æsthetic choices, easing the creation of compelling pictures.

Abstract
We introduce a new approach to tone management for photographs.
Whereas traditional tone-mapping operators target a neutral and
faithful rendition of the input image, we explore pictorial looks by
controlling visual qualities such as the tonal balance and the amount
of detail. Our method is based on a two-scale non-linear decompo-
sition of an image. We modify the different layers based on their
histograms and introduce a technique that controls the spatial vari-
ation of detail. We introduce a Poisson correction that prevents po-
tential gradient reversal and preserves detail. In addition to directly
controlling the parameters, the user can transfer the look of a model
photograph to the picture being edited.

Keywords: Computational photography, high dynamic range, tone
management, pictorial look, bilateral filter, image processing

1 Introduction
Much research has been dedicated to tone mapping for the display
of high-dynamic-range images. These tools focus on contrast re-
duction, seeking a neutral reproduction, and are ideal when fidelity
is needed. However, tone manipulation is also useful when the input
has normal dynamic range, and many users seek to obtain a certain
“look” for their pictures to convey a mood or an æsthetic. This

is particularly significant for black-and-white photography where
strikingly distinctive styles can be achieved. We present a new tone
management approach that offers direct control over the “look” of
an image for both high- and normal-dynamic-range inputs.

The “look” of images has been addressed in Non-Photorealistic
Rendering and recent analogy approaches enable the imitation of
texture or stylized images in a purely data-driven fashion, e.g.
[Hertzmann et al. 2001]. However, to the best of our knowledge,
no approach enables the imitation of a photographic “look” such as
the ones achieved by master black-and-white photographers.

We argue that a large part of such a look deals with the man-
agement of tones, which advanced photographers perform through
elaborate lighting, tedious work in the darkroom, or using photo
editing software. Unfortunately, such painstaking work and ad-
vanced skill is out of reach of casual users. In addition, the issues
of workflow and efficiency are becoming prevalent among profes-
sional users. The workflow describes the full process from image
capture to printing and can include multiple software stages and
manual retouching, all requiring much effort. Reducing the user
work is critical to professionals, and many manuals and tools are
dedicated to optimizing and automating all steps. For example, a
wedding photographer takes hundreds of pictures and needs to give
them a consistent look and to swiftly deliver them to clients. Indi-
vidual retouching is hardly an option, and creative control over the
look of each image is often sacrificed. Recently-introduced soft-
ware such as Apple’s Aperture and Adobe’s Lightroom focuses on
workflow optimization but offers little interactive editing capabili-
ties.

To address these difficulties, we propose a tone-management
technique dedicated to both casual and professional photographers.
We focus on the tonal aspects of photos decoupled from their con-
tent. Issues such as framing and topic selection are out of the scope
of our work. We nevertheless demonstrate the wide range of looks
that our approach can produce. We provide simple controls and
enable both global and local tone management. In addition to di-
rect manipulation, users can transfer the look of a model picture,
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(a) Clearing Winter Storm Ansel Adams,1942 or earlier  

(reproduced with permission)

(b) Angkor #71, by Kenro Izu

 (Original: 14"x20" film contact printed on Platinum/Palladium coated paper.) 

Copyright 1994 Kenro Izu, reproduced with permission of the artist.

Figure 2: Typical model photographs that we use. Photo (a) exhibits strong contrast with rich blacks, and large textured areas. Photo (b) has
mid-tones and vivid texture over the entire image.

thereby “showing” the desired look. This also allows professionals
to apply the rendition of previous prints to new photographs.
This paper makes the following contributions.
Large-scale Tonal Balance Management: We control the large-
scale spatial tonal variation over an image.
Spatial Detail Variation: We manipulate the amount of high-
frequency detail or texture and its spatial variation. In particular,
we introduce a computation of textureness that measures local high-
frequency content while respecting strong edges.
Gradient Constraint: We employ a gradient reconstruction step to
prevent gradient reversal and preserve detail.

Our exposition focuses on transfer between images because it
demonstrates the relevance and robustness of the features we ma-
nipulate. However, direct control through the curve interface is
equally powerful, though perhaps more suited to advanced users.

1.1 Related work
Tone Mapping Tone-mapping seeks the faithful reproduction of
high-dynamic-range images on low-dynamic-range displays, while
preserving visually important features [Reinhard et al. 2005]. Our
work builds on local tone mapping where the mapping varies ac-
cording to the neighborhood of a pixel [Pattanaik et al. 1998; Tum-
blin and Turk 1999; Reinhard et al. 2002; Durand and Dorsey 2002;
Fattal et al. 2002; Li et al. 2005]. The precise characteristics of film
have also been reproduced [Geigel and Musgrave 1997; Reinhard
et al. 2002]. However, most techniques seek an objective rendering
of the input, while we want to facilitate the exploration and transfer
of particular pictorial looks.
Conversion to Grayscale Gooch et al. [2005] convert color
images to grayscale while preserving salient features. They also
seek fidelity to the original picture, whereas we explore stylistic
variations. Their approach is nonetheless complementary to ours
because it extracts compelling contrast from color images.
Gradient Image Processing A number of recent techniques
have characterized images by their gradient and used Poisson re-
construction to perform tone mapping [Fattal et al. 2002] and mon-
tages [Pérez et al. 2003; Agarwala et al. 2004]. We also exploit the
Poisson approach to ensure the quality of our result, because it nat-
urally allows us to combat gradient reversal, a traditional plague of
aggressive multi-scale manipulation.

Style Transfer and Stylization Style transfer has been ex-
plored for the textural aspects of non-photorealistic media, e.g.
[Hertzmann et al. 2001; Drori et al. 2003], and DeCarlo et al. stylize
photographs based on saliency [2002]. In contrast, we seek to retain
photorealism and control large-scale effects such as tonal balance
and the variation of local detail. In addition, our parametric ap-
proach leads to continuous changes supported by interactive feed-
back and enables interpolations and extrapolations of image look.

Visual Equalizer Our work is inspired by the ubiquitous vi-
sual equalizer of sound devices. Similarly, the modification of fre-
quency bands can alter the “mood” or “style” of motion data [Brud-
erlin and Williams 1995]. The equivalent for images is challeng-
ing because of the halos that frequency decomposition can generate
around edges. Our work can be seen as a two-band equalizer for
images that uses non-linear signal processing to avoid halos and
provides fine tonal and spatial control over each band.

1.2 Achieving a Photographic Look
The traditional darkroom offers remarkable global and local control
over the brightness, contrast, and sharpness of images via a combi-
nation of chemical and optical processes [Rudman 1994; Adams
1995]. Black-and-white photographs vary in their tonal palette and
how they deal with the dynamic range of a scene. A photographer
like Adams (Fig. 2a) exhibits strong contrast with rich blacks, while
an artist like Stieglitz (Fig. 15a) relies more on the mid-tones. This
suggests the intensity histogram as a characterization of tonal look,
but we show in this paper that the spatial distribution of tones must
be taken into account because a histogram does not make the dis-
tinction between local and global contrast.

The amount of texture is crucial in photographs; some artists use
vivid texture over the entire image (Fig. 2b), while other contrast
large smooth areas with strong textures in other parts of the image
(Fig. 2a). Furthermore, the human visual system is known to be
more sensitive to local contrast than to low spatial frequencies.

Finally, a photograph is characterized by low-level aspects of the
medium such as tone (e.g. sepia toning) and grain (controlled by
the film and paper characteristics).

These observations drive our approach. We propose decompo-
sitions of an image that afford direct control over dynamic range,
tonal distribution, texture and sharpness.

638



large-scale

transfer

bilateral

filter

constrained

combination
postprocess

high pass and local averaging

input

base

detail

textureness

textureness

transfer

modified detail

modified base

black-and-white output final output

model

Figure 3: Overview of our pipeline. The input image is first split into base and detail layers using bilateral filtering. We use these layers to
enforce statistics on low and high frequencies. To evaluate the texture degree of the image, we introduce the notion of textureness. The layers
are then recombined and post-processed to produce the final output. The model is Kenro Izu’s masterpiece shown in Figure 2b.

1.3 Overview
The previous discussion suggests that aspects such as the intensity
distribution at different scales, spatial variations, and the amount
and distribution of detail are critical to the look of a photograph.
This inspires our use of a two-scale decomposition to control large-
scale effects and the texture distribution. We quantify the look of
an image using histograms over this decomposition, which affords
both interactive control using a curve interface, and the ability to
automatically transfer visual properties between images. In the lat-
ter, histograms of the components of a model image are forced upon
a new input. Because we explore strong stylistic variations, we tend
to perform larger modifications to the input than tone mapping. In
particular, some looks require an increase in local contrast, which
can produce halos if traditional techniques are used. We introduce a
gradient constraint that prevents undesirable modifications. Finally,
we post-process the image to achieve various effects such as soft fo-
cus, paper grain, and toning. Figure 3 summarizes this process.

2 Background
Before introducing our approach, we review important image-
processing tools at the core of our technique.

Histogram Matching Matching histograms is the traditional
solution to transferring an intensity distribution. Given an image
I with histogram hI and a reference histogram hM , we seek a func-
tion `IBM such that applying `IBM to each pixel of I results in an
image with histogram hM . To build `IBM , we use the cumulative
histograms cM and cI defined by c(x) =

∫ x
−∞ h. It can be shown

that cI(I) produces an image with a uniform histogram. Thus, we
define:

`IBM(x) = c−1
M [ cI(x) ] (1)

and `IBM(I) generates an image with the histogram hM . More de-
tails can be found in image processing books, e.g. [Gonzales and
Woods 2002] (p. 94). While histogram matching is a key tool in
our approach, we observe that matching the pixel histogram is not
sufficient to control the tonal look of an image (Fig. 11, 15 and 16).

Poisson Reconstruction Given a 2D field of 2D vectors v,
one can build an image I with a gradient ∇I as close as possible
to v, in the least square sense. This is achieved through a Poisson
equation:

∂ I/∂ t = ∆I −div(v) (2)

Pérez et al. [2003] have shown impressive image manipulations us-
ing this tool. We refer to their paper for detail.

Bilateral Filtering The bilateral filter [Tomasi and Manduchi
1998] smooths the input image while preserving its main edges.
Each pixel is a weighted mean of its neighbors where the weights
decrease with the distance in space and with the intensity differ-
ence. With gσ (x) = exp(−x2/σ2), a Gaussian function, the bilat-
eral filter of image I at pixel p is defined by:

bf (I)p =
1
k ∑

q∈I
gσs(||p−q||) gσr

(
∣

∣Ip − Iq
∣

∣

)

Iq (3a)

with: k = ∑
q∈I

gσs(||p−q||) gσr

(∣

∣Ip − Iq
∣

∣

)

(3b)

where σs controls the spatial neighborhood, and σr the influence of
the intensity difference, and k normalizes the weights. The bilateral
filter is often used to create a two-scale decomposition where the
output of the filter produces a large-scale layer (a.k.a. base) and the
difference is called the detail layer [Durand and Dorsey 2002]. We
use our fast version of the bilateral filter [Paris and Durand 2006].

3 Large-Scale Tonal Distribution
Our tone management relies on a two-scale decomposition based on
the bilateral filter. We refine the standard usage of the bilateral filter
in two ways: we introduce a gradient correction to prevent gradient
reversals, and we apply histogram transformations instead of just
scaling the large-scale component as in traditional tone mapping.

3.1 Bilateral Decomposition
We use a decomposition similar to that of Durand and
Dorsey [2002]. Since contrast is a multiplicative effect, we work
in the logarithmic domain. We define the base layer B and detail
layer D from the input image I (where I, B and D have log values):

B = bf (I) and D = I − B (4)

The choice of σs and σr is crucial. σs specifies spatial scales and
σs = min(width,height)/16 consistently produces good results. σr
differentiates important edges from detail. We rely on the gradient
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(a) input image (b) uncorrected detail (c) corrected detail

Figure 4: The bilateral filter can cause gradient reversals in the
detail layer near smooth edges. Note the problems in the high-
lights (b). We force the detail gradient to have the same orientation
as the input (c). Contrast is increased in (b) and (c) for clarity.

norm to estimate the edge amplitude in the input. With p 90 denot-
ing the 90th percentile1, σr = p90(||∇I||) achieves consistently good
results. These settings are robust to spatial and intensity scales.

Gradient Reversal Removal Durand and Dorsey [2002] note
that artifacts can occur when edges are not sharp. They introduce a
“fix” that detects uncertain pixels and uses a smoothed base layer,
but they highlight that this solution is not entirely satisfying. The
problem is more acute in our case because we may increase the
amount of detail (by a factor as high as 6 in some examples), which
requires a reliable halo-free detail layer.

We address this by directly constraining the gradient of the de-
composition to prevent reversal. We force the detail derivatives
∂D/∂x and ∂D/∂y to have the same sign as the input derivatives
and an amplitude no greater than them. For this, we build a gradient
field v = (xv,yv):

xv =











0 if sign(∂D/∂x) 6= sign(∂ I/∂x)
∂ I/∂x if |∂D/∂x| > |∂ I/∂x|
∂D/∂x otherwise

(5)

The y component yv is defined similarly. The corrected detail layer
is obtained by solving the corresponding Poisson equation (Eq. 2).
We update the base layer accordingly: B = I −D. This approach
results in a high-quality detail layer because it directly addresses
gradient reversal and preserves other subtle variations (Fig. 4).

3.2 Tonal Balance
The base layer contains the large-scale spatial distribution of tones
(Fig. 5). In contrast to tone mapping where the base layer is simply
scaled down [Durand and Dorsey 2002], we want to enforce a large-
scale distribution of tones that matches a model image. This is why
we perform histogram matching and transfer the histogram of the
model base BM onto the new base BI .

%

20 40 600 80

luminance

Figure 5: The luminance histogram of the base component is a good
indicator of tonal balance. The photos are the same as in Figure 2.

1For an image I, pn(I) is the intensity value such that n% of the values
of I are under it, e.g. p50(I) is the median. Percentiles are robust to outliers.

4 Detail and Texture Management
The amount and spatial distribution of high-frequency texture is the
natural complement of the large-scale tonal palette. The core con-
tribution of our work is a technique that manipulates the amount
of high-frequency content and its spatial variation. This contrasts
with tone mapping approaches that usually do not modify the detail
layer.

This step involves additional challenges compared to the base
transform. First, we show that the detail layer does not capture
all the high frequency content of the image. Second, we need to
modify the spatial variation of detail without creating artifacts. In
particular, we introduce a new technique to measure and modify
local frequency content in an edge-preserving manner.

4.1 Detail Management based on Frequency Analy-
sis

While the bilateral filter provides a decomposition that facilitates
halo-free manipulation, the edge-preserving term gσr results in sub-
stantial high-frequency content in the base layer (Fig. 6). While the
choice of different parameters or more advanced filters [Choudhury
and Tumblin 2003] can affect this issue, the very nature of such fil-
ter calls for high-frequency content in the base. In particular, the
influence of the range Gaussian gσr means that patterns that are
high-frequency but high-contrast will mostly be in the base. While
this is not an issue for tone mapping where the detail is unaffected,
it is critical for our detail management. On the other hand, the ma-
nipulation of the detail layer is a safe operation that does not lead
to the halo artifacts caused by linear image processing.

Our solution combines linear frequency analysis with the ma-
nipulation of the detail layer obtained from our nonlinear filter. We
analyze the amount of texture (or high frequency) using a high pass
filter applied to both the detail and the base layer. This ensures
that all the frequency content is taken into account. We use this in-
formation to decide how the detail layer should be modified. In a
nutshell, we get the best of the two approaches: reliable analysis of
the high-pass filter, and the safe manipulation of the detail layer.

4.2 Textureness
We seek to characterize the local amount of high frequency content
over the image to distinguish regions with high levels of detail from

(a) input

(c) high frequencies of base layer

(b) high frequencies of input

(d) high frequencies of detail layer

0

+

Figure 6: Because of the preserved edges, the high frequencies of an
image (b) appear both in the base layer (c) and in the detail layer (d).
This phenomenon has to be taken into account to achieve an appro-
priate analysis.
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(b) high frequencies H (c) absolute values |H|

(d) activity/power map:

low pass of |H|

(e) textureness: cross 

bilateral filter of |H| and I

(a) input I

Figure 7: Textureness of a 1D signal. To estimate the textureness of
the input (a), we compute the high frequencies (b) and their absolute
values (c) . Finally, we locally average these amplitudes: Previous
work based on low-pass filter (d) incurs halos (Fig. 8) whereas our
cross bilateral filtering yields almost no halos (e) .

smooth regions. We build on the notion of power maps, e.g. [Su
et al. 2005] and activity map [Li et al. 2005] where the local average
of the amplitude of high frequencies is used. Figure 7 illustrates our
computation of textureness for a 1D example where the left part has
a high level of local contrast while the right part is smooth.

First, we compute a high-pass version H of the image using the
same cutoff σs. Note that the local average of such a high-pass
image is by definition zero: the low frequencies are removed. This
is why we consider the magnitude (or absolute value) of H (Fig. 7c).
Power maps or activity maps are then defined as the local average –
obtained via low-pass filtering – of this magnitude (Fig. 7d). Such
maps provide good characterization of highly-textured vs. smooth
regions and the local level of detail can be altered by modifying the
detail layer accordingly.

Unfortunately, such spatially-varying manipulation of detail can
lead to artifacts at the boundary between highly detailed and smooth
regions (Fig. 8). This is because the amount of detail on one side
of the boundary influences the estimate on the other side, and the
manipulation suffers from a halo effect similar to that observed in
linear frequency decomposition of image intensity. This problem is
the same as the one addressed by edge-preserving decomposition,
except that we are dealing with a less spatially localized quantity,
the magnitude of high frequency |H|. Strong edges are hard to char-
acterize in |H|, which is why we define textureness using a cross-
bilateral filter [Eisemann and Durand 2004; Petschnigg et al. 2004]
where the intensity image defines the edge-preserving term to filter
|H|. More precisely, our textureness is defined as

T (I)p =
1
k ∑

q∈|H|

gσs(||p−q||) gσr

(∣

∣Ip − Iq
∣

∣

)

|H|q (6a)

with: k = ∑
q∈I

gσs(||p−q||) gσr

(∣

∣Ip − Iq
∣

∣

)

(6b)

We set this cross filter with the same σr as for the base-detail
computation, but with a larger σs (8 times larger in practice) to en-

Figure 8: Using a Gaussian filter to locally average the high fre-
quency amplitudes yields halos around strong edges. To prevent
this defect, we use an edge-preserving filter.

sure smooth textureness variations on uniform regions (discontinu-
ities can still happen at edges). Figure 9 shows how our textureness
map captures the local amount of detail over the image.

(a) input (b) textureness
0

+

Figure 9: Our measure of textureness indicates the regions with the
most contrasted texture.

Textureness Transfer The input I and model M have texture-
ness maps T (I) and T (M), respectively. Using histogram transfer,
we enforce the histogram of T (M) onto T (I) to build the desired
textureness map T ′. To prevent halos, we modify only the detail
layer D to approximate T ′. We scale the values of D by a ratio ρ to
match T ′ values while accounting for the textureness of the base B′

modified by the tonal balance of the previous section:

ρp = max
(

0,
T ′

p −T (B′)p
T (D)p

)

(7)

We do not apply negative ratios, thus preventing gradient reversals.
Although this computation is done pixel-wise, we found that the
textureness maps are smooth enough to ensure a smooth transfor-
mation. We linearly recombine the layers to produce the output:
O = B′ +ρD.

4.3 Detail Preservation
As illustrated by Figure 10b, the previous result (O = B′+ρD) may
result in saturated highlights and shadows. These bright and dark
regions are nevertheless of higher importance for photographers
who aim for crisp details everywhere. We preserve these details
in two steps.

First, we enforce the intensity histogram of the model M to the
current output O, which brings back the values within the dis-
playable range. Second, we modify the gradient field to ensure
that no details are removed or overly emphasized. Similarly to our
shock removal, we build a gradient field v that satisfies these con-
straints. We aim at preserving a portion α of the variations of the

(a) input (b) unconstrained (c) histogram

matching

(d) gradient

constraint

Figure 10: Without constraints, the result may lose valuable
details (b) because the highlight are saturated. Enforcing the
model histogram brings back the intensity values within the visi-
ble range (c). Finally, constraining the gradients to preserve some
of the original variations (a) produces high quality details (d).
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(a) model (608x785) (b) HDR input (512x768) (c) direct histogram matching (d) our result

Figure 11: Our system can seamlessly handle HDR images . We can turn a sharp picture (b) into a soft grainy and toned photograph (d). We
have toned the histogram-transferred version (c) to prevent biased comparison due to different color cast. The model (a) is Accident at the
Gare Montparnasse from the Studio Lévy and Sons, 1895. The input (b) is courtesy of Paul Debevec, USC

input image, and we prevent the gradient being increased by a factor
greater than β to avoid over-emphasizing noise. We define:

xv =











α ∂ I/∂x if |∂O/∂x| < α |∂ I/∂x|
β ∂ I/∂x if |∂O/∂x| > β |∂ I/∂x|
∂O/∂x otherwise

(8)

The y component yv is defined similarly, and the image is recon-
structed with the Poisson technique. All that remains is to set α and
β . We use percentiles to define φ = [p95(O)− p5(O)]/[p95(I)−
p5(I)], which robustly estimates the contrast change induced by
our processing. We then use a constant α = φ/4, and we make
β depend on intensity in order to avoid increasing noise. We
use a smooth-step function ντ (x) = 0 if x < τ , 1 if x > 2τ , and
1− [1− (x− τ)2/τ2]2 otherwise. Setting β = 1 + 3ντ φ performs
consistently well with τ = 0.1. As a result, we successfully preserve
the richness of the input images as shown on Figure 10.

5 Additional Effects
While our focus is on the management of the tonal palette and the
variation of detail, we have also developed simple filters to control
low-level aspects of the look of a photograph.

Soft Focus and Sharpness The level of sharpness of a pic-
ture is a strong aspect of style as exemplified by soft-focus effects.
To characterize sharpness, we use difference-of-Gaussian filters and
analyze three octaves of the current output O. We set the parameters
so that the highest band captures the wavelengths shorter than λh =
min(width,height)/256. For each band BO

i , we evaluate the sharp-
ness of the most contrasted edge with the 95th percentile p 95(

∣

∣BO
i
∣

∣).
We divide this number by p95(O)− p5(O) to make this measure in-
variant to intensity. The use of percentiles makes this estimation ro-
bust. To summarize, our sharpness estimator is a triplet of numbers
(ζ1,ζ2,ζ3) defined as ζ O

i = p95(
∣

∣BO
i
∣

∣)/(p95(O)− p5(O)). We
compute the same measures for the model M and scale the bands
BO

i of the output by a factor ζ M
i /ζ O

i to transfer sharpness. See
Figure 11, 15 and 17. In particular, in Figure 11, the intermedi-
ate frequencies are attenuated more than the highest frequencies,
achieving a “soft-yet-sharp” rendition which is a convincing ap-
proximation of the effect produced by a soft-focus lens.

Film Grain and Paper Texture Some photographs exhibit a
characteristic appearance due to the paper which they are printed
on or because the film grain is visible. We reproduce this effect in
two steps. First, since the grain is not part of the image content, we
remove it from the model image with a bilateral filter on the lumi-
nance values, using σr = p75(||∇M||). Then, we crop a sample from
the residual (detail) of this bilateral filter in a uniform region. We
generate a grain layer using texture synthesis [Heeger and Bergen
1995] (Fig. 1, 11, and 15).

Color and Toning To handle color images, we can use the orig-
inal a and b channels in the CIE-LAB color space. a and b can be
used directly, or they can be scaled by LO/LI where LI and LO are
the luminance of the input and current output. The latter alters color
saturation and is useful for HDR images because their chromaticity
is often out of the displayable gamut [Fattal et al. 2002; Li et al.
2005]. Figures 13 and 17 show color renditions.

We produce toned pictures (e.g. sepia) using a one-dimensional
color map. We use the Lab color space to build the functions a(L)
and b(L) from the model by averaging a and b for the pixels with
a given L. These functions are then applied to the L values of the
current result (Fig. 11).

6 Results
We demonstrate our technique using models by different artists on
a variety of inputs, including pictures by beginners using point-and-

(a) low resolution (b) high resolution, twice of (a)

Figure 12: Results from lower resolution (a) provides quick pre-
views and allow for interactive adjustments before rendering high
resolution results (b). Limited differences are visible on the small-
est details (e.g. in the background) because they are not well sam-
pled in the low-resolution image.
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(a) input image (800x424) (c) result after user adjustment(b) result from model

Figure 13: This rendition was obtained in two steps. We first used Kenro Izu’s picture shown in Figure 2b as a model (b). Then, we manually
increased the brightness and softened the texture to achieve the final rendition (c) that we felt is more suitable for the scene.

shoot cameras, photos by more advanced amateurs using SLRs, and
high-dynamic-range images (Fig. 11).

Computation time varies roughly linearly with the number of
pixels, thanks to our fast bilateral filter and a multigrid implementa-
tion of gradient reconstruction. For example, the full pipeline for a
one megapixel image takes about six seconds on a 2.6GHz Opteron
PC, and a four megapixel takes 23 seconds. However, note that
we cache intermediate results such as the base, detail, and texture-
ness map, which enables interactive feedback when using the user
interface. In addition, results from downsampled images are faith-
ful previews (Fig. 12) because our parameters are scale invariant,
which enables fast interaction before a final computation at full res-
olution.

Our implementation enables interactive adjustment of the para-
meters through controls such as sliders for scalar parameters and,
for the remapping function of the base layer, a spline interface in-
spired by the “curve” tool of photo-editing software. These adjust-
ments can be saved and reused on subsequent inputs. We have also
found that the interactive control is a great way to refine the result
of an automatic transfer (Fig. 13).

Figures 15 and 16 shows a comparison of our results with a
straightforward histogram matching from the model to the input.
Histogram matching ignores the notion of texture and therefore
overly increases or decreases the picture detail. In comparison, our
technique yields results that are both more faithful to the model and
higher quality, with rich shadows and detailed highlights.

Discussion The main cause of failure of our approach is poor
input quality. In particular JPEG artifacts and noise noise can be
amplified by our detail manipulation (Fig. 14). Apart from this,
meaningful input/model couples (two landscapes, two trees, etc)
consistently yield faithful transfers, close to our expectations. On
more surprising pairs (e.g. a flower and a landscape), the process
does not generate artifacts and the achieved mood is often pleasing,
although one can always argue about the æsthetic quality of some
results. Portraits are probably the most challenging type of input,
and detail enhancement can lead to unflattering result because skin
defects can be emphasized. It is then best to turn this feature off.

Figure 14: Our technique suffers from imperfections such as JPEG
artifacts. In this example, the artifacts in the sky are not visible in
the input image (Fig. 9a) but appear clearly after processing.

7 Conclusions
We have presented an approach to manipulate the tonal look of
digital photographs. Using a combination of non-linear edge-
preserving decomposition and linear analysis, we control both the
large-scale tonal palette and the detail over an image. In particu-
lar, we manipulate the spatial variation of high-frequencies using a
new textureness map that performs an edge-preserving analysis and
manipulation of the high-frequency content. We have introduced a
gradient constraint that preserves image content and prevents gra-
dient reversal and halos.

Our method can be used to transfer the look of a model pho-
tograph or can be directly controlled using a simple interface. It
allows for the exploration of a variety of styles and achieves high-
quality results that are consistent from low-resolution previews to
high-resolution prints.

This work opens several areas of future research. It should be
combined with approaches to control the color components of pic-
torial style. While early experiments with videos have shown that
our technique itself is stable, we have found that the biggest chal-
lenge is the fluctuation created by auto-exposure, autofocus and the
variation of motion blur when the camera moves.
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(b) input with auto-levels (876x584)

(c) direct histogram transfer (d) our result

(a) model (622x512)

Figure 16: Our approach is able to reproduce the level of texture observed in Adams’ masterpiece (a) to achieve a compelling rendition (d). In
comparison, Adobe R© Photoshop R© “auto-level” tool spans the image histogram on the whole intensity range. This reveals the small features
of a picture but offers no control over the image look (b). And, a direct histogram transfer only adjusts the overall contrast and ignores the
texture, thereby producing a dull rendition (c).

(a) input image (1200x900) (b) our result

Figure 17: For color images, we process the luminance channel of the image and keep the original chrominance channels. In this example,
the details are enhanced while the overall contrast and sharpness are increased. We used Adams’ picture (Fig. 16a) as a model.
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